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Foreword

This book is an introduction to reservoir simulation. In contrast to
other books on the same topic, all the software employed in this
book are freely available and open source. There are two main rea-
sons for choosing such software. The first is that all students have
access the to software, also when they leave the university (or for
that matter, a company). This is in contrast to commercial software
that require a license. The second reason is the openness of the
open source software makes it well suited for research. Commer-
cial software might be a black box, where it sometimes is difficult to
know exactly which methods have been employed. This is a prob-
lem for research which is expected to rigorous. With open source
software there are no longer any black box, as the full code base is
open for investigation and thereby available for scrutiny. Further, it
is possible to change any part of the code to test out new methods
and methodology. This enables researchers to test out new ideas
and methods in a mature reservoir simulator. Bringing concepts
from simplified models, e.g. one dimensional models, into a full
reservoir simulator elevates support for the research results. For
these reasons, a number of master and PhD theses have already
been based on the software presented in this book.

The content of this book started out from the lecture notes of Jon
Kleppe, who gave the course Reservoir Simulation at NTNU be-
fore me. The shift in software from commercial to open source has
changed the content. So too has the shift from Fortran to Python.
Still, the main structure is reminiscent of the notes from Kleppe.
Thanks to Muhammad Iffan Hannanu for changing the word doc-
ument files from Kleppe into Latex during a summer project at
NTNU.

Trondheim
December 20, 2019

Carl Fredrik Berg
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1
Introduction

Here had been a treasure of oil that,
wisely drilled, would have lasted thirty
years: but now the whole field was "on
the pump," and hundreds of wells
producing so little that it no longer paid
to pump them. One sixth of the oil had
been saved, and five-sixths had been
wasted!

Upton Sinclair, Oil!

The main goal of reservoir simulation is to guide management of
the subsurface reservoir through future forecasting and prediction,
thereby avoiding wasting resources as described in excerpt from the
book Oil! There is a wide range of subsurface optimization prob- The book Oil! was the inspiration for

the 2007 movie There Will Be Blood.lems that need forecasting: Whether one is working on maximizing
the net present value during the oil production from a hydrocar-
bon reservoir, maximizing fresh water production from an aquifer,
or finding the optimal well placement for sequestration of carbon
dioxide into a deep subsurface aquifer, reservoir simulation could
give predictive input into the optimization. Common for these and
similar optimization problems is that we have a porous material,
e.g., porous rocks such as sedimentary sandstone or carbonates,
sand or soil, and transport of fluids through the porous medium.

When we say a reservoir we usually mean the part of the porous Reservoir

material where the resource collects, e.g., under a dome structure
where hydrocarbon collects during their gravity driven upward
movement, or a subsurface structure where precipitation is col-
lected during its gravity driven downward movement. Strictly
speaking, when monitoring hazardous fluids in soil or predicting
sequestration of carbon dioxide, we are not producing a resource,
but polluting or storing an unwanted substance. We will still use
the term reservoir, but now in the meaning the part of the porous
material of importance for the process, e.g., the part of the subsur-
face that will be used for storage. When we talk about reservoirs,
we normally consider resources that can be produced by wells.
Some shallow resources, such as the tar sands in Alberta, Canada,
might be produced by wells, using steam-injection to heat the bi-
tumen, but are more commonly extracted by strip mining. To dis-
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tinguish such shallow resources accessible by surface mines from
deeper resources that needs to be produced through wells, the shal-
low resources available through surface mines can be referred to as
deposits, while deeper resources that needs wells for production can
be referred to as reservoirs.

The two most important properties of a reservoir is the stor-
age capacity and how easy it is to produce from or inject into the
reservoir. The permeability of a porous material is a parameter that Permeability

describes how easy it is for fluids to move through the material.
When witnessing a pressure gradient, the fluids in the reservoir
will start moving in the direction of the pressure drop. The fluid
velocity is described by the Darcy equation (see Eq. (3.26)), and is Darcy equation

dependent on the viscosity of the fluids and the permeability of the
rock material, in addition to the pressure gradient. An extended
version of Darcy’s equation for systems with more than one fluid
phase is additionally dependent on saturation, i.e., the fraction of Saturation

the different fluids filling the pore space (see Eq. (9.3) for the ex-
tended Darcy equation). A higher permeability (and low viscosity) Extended Darcy equation

means that more fluid will be transported at a given pressure gra-
dient. This means that fluids are produced at a higher rate, or that
it is easier to inject fluids into the reservoir. A high permeability is
therefore almost always preferable. One exception is storage of pol-
lutants, where low permeability hinders the spread of the pollutant,
and therefore gives safer storage.

Since reservoirs are permeable, a fraction of the pores must be
connected. As we are only interested in the connected part of the
pore system, we usually define the porosity ϕ = Vc/Vt as the frac- Porosity

tion of volume of the interconnected pores Vc to the total volume
Vt. The spatial extent of the reservoir times the porosity yields the
storage capacity, which is a principal parameter for the economics of Storage capacity,

a reservoir.
During the production or injection phase, reservoir simulation is

a continuous activity integrating the stream of data from the reser-
voir into a reservoir simulation model. Thus the simulation model
will be continuously updated, and with it the future predictions
will be continuously altered to give the best prediction based on the
currently available data of the reservoir.

Reservoir simulators are software designed to model fluid flow Reservoir simulator

in porous media. There is a range of available reservoir simulation
software available. The reservoir simulator considered in this text See Chap. 2 for description of the

different software used in this book,
including OPM-Flow, and links to sites
where they can be downloaded.

is the software OPM-Flow from the Open Porous Media (OPM)
initiative.

In the context of reservoir modeling, the description of the sub-
surface, provided as input data to the reservoir simulator, is called
a reservoir simulation model realization. Since this is a text on reser- Reservoir simulation model realization

voir simulation, and not on reservoir modeling in general, we will
for the most part simply use the shortened term reservoir model. Reservoir model

The reservoir model must contains all relevant information about
the reservoir, including description of the reservoir geometry (grid
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model), petrophysical properties, and fluid properties.
In order to simulate different production scenarios, the simulator

input data must also contain information on wells, well controls,
and production constraints. The total simulator input is called a
simulation model. Simulation model

Reservoir simulation results are the end result of data gather-
ing and interpretation by many disciplines, including geologists,
seismic interpreters and well-log interpretations by petrophysicist.
Reservoir simulation therefore ends up as the point of contact for
technical staff in companies. Analogous, developing reservoir sim-
ulation models combines the disciplines of physics, mathematics,
chemistry, reservoir engineering, and computer programming. The
interdisciplinarity of reservoir simulation can be challenging, as it
requires diverse knowledge. It can also be rewarding, as it gives
good overview of the workflows leading up to reservoir manage-
ment decisions.

1.1 Subsurface reservoirs and driving mechanisms

Subsurface reservoirs are typically massive, relatively horizontal
layered, structures, divided into fault blocks by faults, as indicated
by the outcrop in Fig. 1.1. The reservoir consist of material that is

Figure 1.1: A photo show-
ing layered structures from
Kjøllefjord in Finnmark, Nor-
way. The Sami sacrificial site
Finnkirka can be seen to the
lower right of the image.

both porous and permeable. These structures can be interconnected
with the surface, and are then usually filled by water and air. The
Netherlands and Israel have been spearheading research into such
groundwater flow due to issues with flood control in the Nether-
lands and problems of inflow of salt water into fresh water reserves
connected to the sea in Israel. For oil reservoirs, the pores contain
hydrocarbons (oil and/or gas) in addition to brine. The hydro-
carbons are hindered in their upward migration by impermeable
material, and therefore accumulates. For CO2 sequestration into an
aquifer the reservoir contains CO2 as a cap under an impermeable
material, but will also contain significant amount of CO2 dissolved
in the water.

For groundwater the porous material can be soil and sand, while
for deeper aquifers, oil reservoirs and CO2 storage sites the porous
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material is typically sedimentary rocks, such as sandstone and
carbonates. Sedimentary rocks have been formed by deposition
of sand, clay and organic material. Over time these sediments are
pushed downwards and covered by new layers of sediments or
other material. When deeper, the sediments can be heated and
pressurized, which lead to diagenetic processes changing the struc-
ture, e.g., dissolution of specific minerals (e.g., feldspar and mica),
overgrowth of other specific minerals (e.g., quartz overgrowth). Di-
agenetic processes consolidates the material, making the originally
unconsolidated material such as loose sand into hard rocks.

As the sediments accumulates over large areas, such as lakes and
shores, the sedimentary structures in reservoirs are horizontally
extensive. They typically show sheet like structures, called beds. Bed

Due to the lateral size, such beds can be interconnected between
wells that are kilometers apart. As already mentioned, on top of
CO2 storage sites and hydrocarbon reservoirs is an impermeable
bed hindering the upward migration of the CO2 or hydrocarbons,
respectively. Inversely, impermeable beds stops the downward
migration of precipitated water and accumulates the fresh water
resource in aquifers.

Impermable layer

Permable sands

Upward
migration

Figure 1.2: Upward migration
from the injector and trapping
of injected CO2. The CO2 is
trapped by an impermeable
layer and an impermeable fault
(indicated as a black line). The
perforated part of the injection
well is indicated by a light gray
color.

Reservoir can also be confined on the sides by faults: Faults are Fault

discontinuities in the rock formed from massive movements in the
earths crust, which have caused the rock to move in opposite direc-
tion on the two sides of the fault. The faults are then abrupt shifts
in the elsewhere continuous beds, and these shifts can be large
enough to be observed on seismic. Faults have varying degree of
permeability, with some faults being practically impermeable, and
thereby part of the boundaries of the reservoir. This way they can
be part of the trap for upward moving fluids, as shown in Fig. 1.2.

In carbon dioxide sequestration, fluids are injected into the sub-
surface reservoir. At the pressure and temperature in the subsur-
face, the carbon dioxide is often at supercritical conditions, and of For typical subsurface temperature

and pressure gradients, CO2 is super-
critical when below depths of around
800 m.

a lower density than the displaced brine. This density difference
leads to upward migration due to gravity. As the carbon dioxide
should be sequestrated for the unforeseeable future, the upward
migration needs to hindered, e.g., by injection under an imperme-
able barrier. Suitable reservoirs for carbon dioxide sequestration are
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therefore often similar to hydrocarbon reservoirs.
The migration of hydrocarbons from source rocks and into reser-

voirs follows a similar process as the sequestration of CO2, however,
the distance between the source rock and the reservoir is typically
much larger than the distance between the CO2 injection well and
the trap for the upward migrating CO2. Thus, the migration of
hydrocarbons cover spatial scales, the basin scale, which are much
larger than the reservoirs from which hydrocarbons are produced.
Sometimes reservoir simulation software tools are used for sim-
ulating the process of hydrocarbon accumulation, but reservoir
simulation of hydrocarbon resources typically concentrate on the
production phase. The accumulation of a resource is also happen-
ing over a long time horizon compared to the time horizon for
production of the resource. On the flip side of that, for CO2 seques-
tration, ensuring safe storage requires simulations on much longer
time-scales than the period of CO2 injection, but then simulations
of the time after the injection period. The methods and simulations
covered in this book has a stronger focus on the short term, i.e., the
production or injection phase.

While sequestration depends on injection into a reservoir, pro-
duction of fresh water or hydrocarbons depends on fluid extraction
from a reservoir. Both fluid injection and fluid extraction starts with
drilling wells into the reservoir. If the reservoir pressure is higher
than the hydro-static pressure of the fluids inside the well, fluids
will start to flow into the well. We then get a flow of fluids from
the reservoir, through the well, and up to the surface. This initial
fluid extraction driven by the reservoir pressure (and thereby the
potential energy of the compressed fluids in the reservoir) is called
primary recovery. Energy can be added to the reservoir by wells Primary recovery

where fluids, e.g., water or gas, are injected into the reservoir. This
additional energy can increase recovery from the producing wells.
Recovery as a result of injection wells is called secondary recovery. Secondary recovery

For hydrocarbon extraction, where we are only interested in the hy-
drocarbon portion of the produced fluids, secondary recovery can
greatly increase the recovery compared to primary recovery. For
this reason, most large oil fields are quickly moved from primary
recovery to secondary recovery. Further increase in recovery can
be obtained by additives to the injected fluids. Such additives are
typically either lowering the surface tension between injected and
produced fluid (assuming that the injected and produced fluids are
immiscible phases separated by a fluid-fluid interface), or increas-
ing the viscosity of the injected fluid. These two types of changes to
the injected fluid typically increase the recovery. All injection meth-
ods more advanced than injection of water or gas without additives
are called tertiary recovery methods. Tertiary recovery

Already primary recovery involves choices with large impact on
the recovery: Where to place the wells? Should one drill horizontal
or vertical wells? What drainage rate would yield the optimal pro-
duction curve? How will the different wells affect each other? With
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secondary recovery all these questions get more complex: Where
should the injectors be place to optimally drive the resources to-
wards the producers? And at what rate? The complexity is even
higher for tertiary methods: Which methods should be used? What
is the right amount of additives? When is the optimal onset of the
tertiary method? To answer such types of questions we need reser-
voir simulation, and for reservoir simulation we need a reservoir
model.

1.2 What is reservoir modeling?

The role of reservoir modeling is to summarize as much as possi-
ble of our collective qualitative and quantitative knowledge about the
reservoir in order to give quantitative answers to questions related to
reservoir development and reservoir management. The product of
reservoir modeling is a reservoir model.

Digital representations of the sub-surface are among the prod-
ucts of reservoir modeling, and they are absolutely necessary in
order to get quantitative answers through reservoir simulation. To
be more specific, these digital representations are called model re-
alizations. They exist in the form of geo-model realizations (static) Model realizations

and simulation-model realizations (dynamic), with the latter being
what we will simply call reservoir models in the context of reser-
voir simulation.

  

Figure 1.3: An ensemble of
reservoir model realizations,
showing a spread in static
properties arising from un-
certainty in the geological
model. This ensemble is from
the Olympus model created by
Fonseca et al. (2018).

Since our knowledge about the true sub-surface is always lim-
ited, a single realization can not give the uncertainty span for
outcomes that is needed for making good reservoir management
decisions. In order to span out the uncertainty, an ensemble of
statistically representative realizations is needed, and the actual
reservoir model therefore comprise a set of parameterized recipes
for creating model realizations. Furthermore, since different models
are needed for answering different questions, all models should be
based on a common set of concepts and data, stored in a knowledge
database. This database can be a true knowledge management sys- Knowledge database

tem, but in practice most companies rely on a mixture of databases
(typically for measured data) and more informal storage formats.

The number of software tools involved in reservoir modeling is
extensive, and range from data management tools and asset sim-
ulators to specialist simulators for tertiary recovery: Knowledge
management systems and database tools are often called shared
earth models, and serve as the basis upon which ideally all modeling Shared earth models

is built. Work-flow managers enables the writing of parameterized Work-flow managers

recipes for creating model realizations, and exist both internally in
various software packages, and as separate work-flow management
software. Geo-modeling tools, such as Petrel and RMS, are static Geo-modeling tools

model builders, and may contain modules all the way from seismic
interpretation to the building of reservoir simulation model grids
filled with appropriate properties. Reservoir simulators, such as Reservoir simulators

OPM-Flow, Eclipse, Intersect (IX), Tempest MORE, and tNavigator,
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are used to evaluate the dynamic response of a reservoir to pro-
posed drainage strategies and interventions, while asset simulators, Asset simulators

such as Pipe-It, are used for optimizing systems of multiple reser-
voirs coupled to common top-side equipment and infrastructure.

1.3 Classification of models

Reservoir models may be classified either based on the purpose of
the model, i.e., which questions the model is supposed to answer,
or based on the scope of the model, i.e., which sub-surface features
are included.

The model purpose can be

• Field development:
The main questions to be answered in field development are the
number of wells and their placement, sub-sea vs. platform, and
capacities of sub-sea and top-side equipment such as separators.
The main tool for answering these questions is usually a full-
field reservoir simulation model. A full field model may contain
several reservoirs, with or without pressure communication.

• Asset optimization:
In a reservoir modeling context, the purpose of asset optimiza-
tion is to optimize top-side equipment and infrastructure which
couple a number of fields, both with regards to which equipment
is to be installed and their capacities, and with regards to how
the production of each field should be prioritized. It is also of
interest to evaluate how different asset-wise production strate-
gies will affect the recovery from each reservoir. Typically a set
of coupled, and simplified, full-field reservoir models are used in
this context.

• Long term production optimization:
Short term production optimization, such as rapid alteration of
production rates to limit gas production, is mostly affecting the
fluid and pressure distribution close to the wells. This is typi-
cally on a spatial and time scale much smaller than what is cap-
tured by reservoir simulation models. However, by determining
targets and limits on the operation of wells and groups of wells,
long term production optimization determines the framework in
which short term optimization operate. In addition to full field
models, more detailed models that cover parts of reservoirs, such
as zones, fault-blocks or near-well regions, are typically used in
this process.

• Selection of in-fill well targets:
The process of identifying targets for in-fill wells, which are
drilled in order to replace or complement existing wells with
declined production, requires input from maps of remaining
in-place resources together with reservoir simulation. Full field
models can be used in an initial screening phase, while more
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detailed models, covering reservoir regions in the vicinity of
proposed sites, are used for more detailed target selection and
definition.

• Well planning and geo-steering:
Models that are used in the planning drilling targets and well
paths must contain the geology of the overburden in addition
to reservoir properties. Geo-steering is the process of utilizing
Logging-While-Drilling (LWD) data for guiding the well-path
while drilling. Detailed, and continuously updatable, near well
models populated with relevant properties related to the logging
tools, such as resistivity, are crucial for a successful application of
this technology.

• Tertiary recovery:
Tertiary recovery methods typically influence reservoir flow in
ways that are not well described by traditional reservoir scale
simulation models. In these cases models with fine-grid repre-
sentation of geology, and often also special reservoir simulators,
are needed in order to evaluate possible effects of applying the
tertiary recovery method.

• Data interpretation:
Reservoir models that cover the volumes influenced by a well
test are used both for planning the test and for well test interpre-
tation.

The main classification based on scope is the distinction between Static vs. dynamic model

a static model, which comprise the geological features with limited
changes during production, and a dynamic model, which contain
the additional features needed for simulating fluid flow during
production. For simulation of the fluid flow in the reservoir we thus
need a dynamic model. As already mentioned, we will simply call
this dynamic reservoir simulation model the reservoir model, while
the static model would sometimes be referred to as the geo-model.

1.4 What is reservoir simulation?

Reservoir simulation is the use of computers to simulate the fluid
flow in a reservoir model by numerically solving equations for
fluid flow. Reservoir simulation software are commonly using finite
volume methods for conservation of mass, with finite difference
methods to solve the flow equations determining flux over the
volume element boundaries. Such methods will be treated in detail
in this book.

Fluid density and viscosity, and fluid phase behavior, is depen-
dent on pressure, temperature, and composition. Reservoir simu-
lators are distinguished by how this thermodynamic description,
conventionally called the PVT-model1, is handled. 1 The thermodynamic description is

conventionally called the PVT-model.
The temperature is often treated as
constant in reservoir simulation, while
the composition is variable, so the
term pVTx-model, or even pVx-model,
would actually be more descriptive.

The first distinction is between thermal and isothermal simulators.

Thermal vs. iso-thermal simulation
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Although injected fluids can have significantly different tempera-
tures than the reservoir, except for near well region, the tempera-
ture changes in reservoirs are often so small that they do not influ-
ence fluid and rock properties significantly. In this case we can treat
the temperature as constant, and we only need to solve for the con-
servation of mass. Note that changes in near well properties due to
the injection of fluids with significantly different temperature than
the reservoir should be taken into account also in this case. For
other processes, for instance the injection of steam into heavy oil
reservoirs, temperature changes are significant, and must be simu-
lated. This is thermal simulation, where we need to account for the
conservation of energy in addition to the conservation of mass.

The second distinction is between compositional simulators, Compositional vs. black-oil simulators

which are based on an explicit equation of state, and simulators
using table based thermodynamic descriptions, typically the black
oil model. Black oil model

The composition of fluids is described in terms of components.
A component is a single chemical species, such as water (H2O),
sodium chloride (NaCl), oxygen (O2), carbon-dioxide (CO2), differ-
ent hydrocarbon species (CmHn), etc. For real subsurface systems,
the composition of the different fluids are never fully described.
The number of components also tend to be very large so that in-
cluding all of them in a simulation is computationally prohibitive.
The components used in the simulation is thus always pseudo com-
ponents. A pseudo component description is a mapping from a Pseudo components

detailed description using real chemical species into a simplified
description with a small number of components. The pseudo com-
ponents may be defined by lumping real components together.
As an example, we might consider the pseudo-component C6+

consisting of all hydrocarbon components C6 and heavier, or the
pseudo-component salt, consisting of all salts dissolved in a brine.
Real components can also be distributed over pseudo components,
such as in the black oil model where the light, and some intermedi-
ate, hydrocarbon components are distributed between two pseudo
components.

Dependent on pressure, temperature, and total composition,
the fluid components in the pore space may be distributed over
several phases in mutual equilibrium. Most reservoir simulators
are three-phase simulators, and in a petroleum context these phases
are brine, oil, and gas. The vadose zone is the unsaturated zone
between the surface and the water table. Thus the pore space in
the vadose zone contains two fluid phases; a liquid phase, which is
mainly composed of water, and a gas phase with the composition
similar to atmospheric air. Below the water table (the pheratic zone)
the pore space is fully saturated by a single liquid phase.

The density and viscosity of water rich phases such as brine and
ground water are only slightly dependent on the composition and
amount of dissolved pollutants, salts, and gases. In these cases the
fluid flow can be modeled as a single component flow and dis-
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solved components can be tracked as a passive tracer. Typically this
is the case with miscible pollutants at small concentrations. We can
also track the movement of the pseudo components “injected sea
water” and “formation water” in a similar way. If the composition
has a significant influence on the liquid properties, such as in the
case of sea water intrusion in fresh water aquifers and dissolved
CO2 in brine during CO2 sequestration, we will need to calculate
the fluid properties from the composition.

When simulating petroleum reservoirs, the formation water, that
is the brine phase, is usually treated as being immiscible with the
hydrocarbon rich phases, and the composition is assumed con-
stant. Thus, the formation water is seen as a phase containing a
single pseudo component called water. The oil and gas phase can,
on the other hand, exchange components and the composition and
saturation of the two phases is determined by thermodynamic equi-
librium. In a compositional simulator, this phase equilibrium is cal-
culated using an explicit equation of state and a number of pseudo
components closely related to the actual hydrocarbon constituents.
Determining the equilibrium state at a given pressure, temperature,
and total composition, is called a flash calculation, and in black oil
simulators, this equilibrium is inferred from tables. A table lookup
is evidently much more efficient than numerically solving a set of
equilibrium equations. Since a black oil simulator also work with
only two pseudo components, it will use much less computational
power than a compositional simulator. The two pseudo components
in the black oil model is conventionally called oil and gas. The gas
component represents the volatile part of the hydrocarbon mix-
ture, which is in the gas phase at standard conditions, while the oil
pseudo component represents the non-volatile part which is in the
liquid (oil) phase at standard conditions. In general, both reservoir
oil and reservoir gas may contain each component. Sometimes this
symmetric formulation is called the wet-gas model, and a distinc-
tion is made between this and the dry-gas model, where the gas
phase contain no oil component. There is also a dead-oil model,
where the components are immiscible2. 2 The reader should be warned that the

term black oil model is not consistent
among authors. In many texts is used
for what we here call the dry-gas
model, some texts also use the term for
the dead-oil model.

As formulated, the black oil model is used to express the ther-
modynamic equilibrium between hydrocarbon phases. However,
since the model is table based it can be used to simulate almost any
system with two pseudo components. We can for example, model
CO2 injection into an aquifer with the black oil model. In this case The black oil model can be used

for simulating any system with two
pseudo components

we have the two pseudo components injected gas (carbon dioxide
with additional gas components) and water, and the two phases
gas (typically a supercritical mixture of CO2 with H2O and addi-
tional components in injected gas) and brine (with dissolved CO2).
Since the brine phase usually is denser than the CO2 rich phase, it
is actually common in this context to identify the brine with the oil
phase in the black-oil model, and the water component with the oil
pseudo component, even though the naming might be confusing.
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1.5 Reservoir simulation workflows

The use of reservoir simulation correlates with the size and com-
plexity of the reservoir, as the use of reservoir simulation is related
to the capital investment and operating costs. Small onshore reser-
voirs might not use reservoir simulation at all, while large offshore
hydrocarbon reservoirs will have a dedicated team of reservoir en-
gineers working solely for a single field. Geologists and reservoir
engineers start working on a field right after discovery, trying to
assess if the discovery is economically viable to produce. They then
need to evaluate the production potential, cost, and risks associated
with different possible development plans.

Before any reservoir simulation study, the goals of the study
needs to be properly defined. For a small and simple reservoir, pro-
duced by pressure depletion, one might not need simulations at all,
while for a tertiary driving mechanism the simulation study could
end up complex and costly, involving a a number of specialized
reservoir models on different scales. Fig. 1.4 shows a flow chart of
a typical workflow for reservoir simulations aiming at delivering
future prediction of recovery. These predictions are the deliveries

geological data

geo-model
(static model)

fluid and flow
properties

reservoir model
(dynamic model)

production data

history matched
reservoir model

prediction

Figure 1.4: Flow chart of a
typical reservoir simulation
workflow.

from the reservoir simulation work, and they are used as decision
support for the management of the reservoir

The first part of any reservoir simulation study is collection of
geological data, e.g., seismic data, well log data and core analysis
data. Together with analogue data, these geological data must be
integrated into the geo-model (the static model). The geo-model
contains information on reservoir compartments, and on the distri-
bution of porosity and permeability inside these compartments.

The second part is collection of additional data needed for the
dynamic model; fluid samples is analyzed in order to build a PVT
model, and special core analysis (SCAL) supply data for the sat-
uration functions (relative permeability and capillary pressure).
Saturation functions will be associated with different parts of the
reservoir based on the distribution of different geological bodies.
One also need to decide on the grid size appropriate for reser-
voir simulation. The grid size must meet an appropriate balance
between computational feasibility and numerical and geological
accuracy.

Reservoir simulations are invariably uncertain, and especially so
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pre production and in the early stages. Reservoir heterogeneity, the
distribution of faults, the shape of relative permeability etc., are all
uncertain factors that contributes to the overall uncertainty in the
reservoir simulation results. The uncertainty of these parameters
can be reduced by additional measurements such as well tests, core
analysis and improved seismic. When the production starts, the
reservoir model will be improved further by incorporating produc-
tion data. It is up to the reservoir engineer, in collaboration with the
colleagues who have delivered the different data sets, to decide the
uncertainty level for the different data sources. The uncertainty in
prediction is best represented by an ensemble of model realizations,
each giving a different prediction. This is however demanding both
in terms of computer- and manpower, so simpler workflows using
a single base-case realization plus sensitivities approach is often
applied. The tuning of reservoir models in order to be consistent
with production data is traditionally known as history matching, and History matching

the history matched reservoir model is our best approximation for
the subsurface behavior build on all available data.
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Software

Cause I’m a 21st century digital boy
I don’t know how to live, but I got a lot of
toys

Bad Religion - 21st Century (Digital Boy)

This book will only use open source software. The reservoir
simulator used in this book is the open source software OPM-Flow

from the Open Porous Media (OPM) initiative. For visualization More information about OPM, in-
cluding the software OPM-Flow
and ResInsight, can be found on
https://opm-project.org/.

of reservoir models and simulation results, we will use the open
source visualization tool ResInsight, also part of OPM. For script-
ing we will use the Python programming language, including the
ecl package. For optimization we will use the Petroleum Field De-
velopment Optimization Framework (FieldOpt), which is an open
source optimization framework developed at NTNU.

The OPM initiative started in 2009 as a collaboration between
Equinor and several research institutions (including SINTEF), and
the focus of the initiative has been to develop open source software
for simulation and visualization of flow and transport in porous
media.

2.1 OPM-Flow

OPM-Flow is a fully-implicit black-oil simulator. The simulator is
using automatic differentiation, which enable rapid development of
new fluid models. The OPM-Flow simulator has extensions to handle To read more about automatic differen-

tiation, a good introduction is given in
(Lie, 2016).

polymer and solvent flooding options.
The main operating system for OPM-Flow is a Linux, and there

are repository packages for the most common Linux distribu-
tions (Ubuntu and CentOS). OPM-Flow can also be run using a
Docker container, which is possible in Microsoft Windows. It
can also be compiled from source on both Linux and MacOS.
Please confirm the OPM website for how to install OPM-Flow:
https://opm-project.org/?page_id=36.

OPM-Flow is run from the command line, and is therefore eas-
ily integrated into sensitivity and optimization workflows. The
input data-files for OPM-Flow are similar to input files used for
ECLIPSE 100, and many simulation models can be run with both

https://opm-project.org/
https://opm-project.org/?page_id=36
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these reservoir simulation software. However, there are keywords
that are not compatible between these two simulators.

The Flow Documentation Manual is available from the OPM web-
site https://opm-project.org/?page_id=955, and this manual
describes all OPM-Flow keywords and their functions.

2.2 Python

Python is a open-source programming language that emphasizes
core readability. It is designed to be extensible, and has a wide
range of libraries and packages available. It has become very popu-
lar in scientific computing, with libraries such as NumPy, SciPy and
Matplotlib.

Python is cross-platform, and can be obtained from

https://www.python.org/

2.2.1 Naming variables

Note that many of the Python scripts use Hungarian-like notation
for prefixes to indicate “what is what”:

• C for class;

• t for objects and structures;

• h for handles/pointers;

• i for integers;

• f for floats;

• d for doubles;

• str for strings;

• ch for chars;

• b for booleans;

• a for arrays;

• aa matrices (i.e., arrays of arrays);

• aaa 3D matrices (i.e., arrays of arrays of arrays), and so on.

2.2.2 ecl package

The Python package ecl is a package for reading and writing the
result files from OPM-Flow and other reservoir simulators. that can
read/write files compatible with the de-facto market standard for-
mats used defined by the ECLIPSE simulator. The file types covered
are the restart, init, rft, summary and grid files. Both unified and
non-unified and formatted and unformatted files are supported.

https://opm-project.org/?page_id=955
https://www.python.org/
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This package is a strong tool for pre- and post-processing sim-
ulation results from OPM-Flow, e.g. in sensitivity studies and op-
timization loops. The Python package can be installed form this
page:

https://github.com/equinor/ecl

If you are using pip install, you can install the ecl package from
the command line:

pip install ecl

2.3 ResInsight

ResInsight is a open-source visualization software which is part
of the OPM project. This software can visualize output from the
OPM-Flow simulator. ResInsight is cross-platform, and can be ob-
tained from

https://resinsight.org/

An important feature in ResInsight is Octave and Python inte-
gration. Octave is an open-source software with similar syntax and
functionality as Matlab, and can be used to post-process the simula-
tion results from OPM-Flow. The Python integration is a newer add
on for using Python to post-process simulation results.

2.4 FieldOpt

FieldOpt is an open source framework for rapid prototyping and
testing of optimization procedures such as well placement opti-
mization, reservoir control optimization and inflow-control device
optimization. The code is written in C++, and is found as a reposi-
tory under the Petroleum Cybernetics Group NTNU GitHub page:

https://github.com/PetroleumCyberneticsGroup/FieldOpt

The GitHub repository also contains a guide for how to compile
the software.

The development of FieldOpt is ongoing, and the aim is to con-
tribute to research workflows by providing an interface between
optimization methodologies and reservoir simulation software.
Several optimization methodologies are implemented in FieldOpt,
including compass search, a genetic algorithm and particle swarm
optimization.

2.5 Repository

Python codes and example reservoir simulator input files used in
this book can be found in the repository

https://bitbucket.org/ntnu_petroleum/ressimbook-material

https://github.com/equinor/ecl
https://resinsight.org/
https://github.com/PetroleumCyberneticsGroup/FieldOpt
https://bitbucket.org/ntnu_petroleum/ressimbook-material
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The repository can be copied (cloned) by running the command

$ git clone https://bitbucket.org/ntnu_petroleum/ressimbook-material.git



3
Basic theory for single phase flow

Nå e me atter på vei
Gjennom storm, gjennom regn
Som en Åsgårdsrei
Og vi går aldri lei

Kvelertak - Kvelertak

In this chapter we will present one-dimensional flow equations
for horizontal flow of one single fluid phase, and look at analytical
and numerical solutions of pressure as function of position and
time. These equations are derived using the continuity equation,
Darcy’s equation, and compressibility definitions for rock and fluid,
assuming constant permeability and viscosity. They are the simplest
equations we can have describing transient fluid flow in a porous
medium.

To start off, we will first give a short introduction to partial dif-
ferential equations. The second section contains a note on contin-
uum models, then a brief introduction to Darcy’s equation, before
we derive the basic equations for flow in porous media. The third
section is deriving an analytical expression for one-dimensional
single phase flow. This analytical solution will be compared to nu-
merical solutions in the next chapter.

3.1 Partial differential equations

When describing physical processes, including transport in porous
media, we commonly describe the problem by a mathematical
equation. For porous media flow the potential driving the flow is
the pressure gradient, which is one example of a physical quantity
that give rise to partial derivatives. The mathematical equations
can be solved to give us the state of the system at later times, which
introduce partial derivatives with respect to time. Working with
partial derivatives is therefore essential for describing and solving
physical processes, including subsurface transport processes.

Let f (x, y, . . . ) be a function of several variables x, y, . . . . As an
example, f could be the pressure p, and the variables could be
spatial coordinates and time, thus p(x, y, z, t). A partial derivative is
the derivative with respect to one variable when the other variables
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are held constant. As an example, the partial derivative ∂ f /∂x of f The are many ways to denote the
partial derivative, including ∂ f

∂x , ∂
∂x f , fx

and ∂x f . We will only use the two first
versions.

with respect to x is the derivative d f /dx when all other variables
are kept constant. Thus we have

∂ f
∂x

=
d f
dx

∣∣∣∣
y,...

= lim
h→0

f (x + h, y, . . . )− f (x, y, . . . )
h

, (3.1)

where the vertical line in the second term indicates which variables
are kept constant.

A partial differential equation (often referred to by the three letter Partial differential equation

abbreviation PDE) is an equation that contains partial derivatives.
In contrast to ordinary differential equations, where the unknown
function depends on only one variable, the unknown function in
partial differential equations depend on several variables. As an
example, consider the partial differential equation

∂2 f
∂x2 =

∂ f
∂t

. (3.2)

Here f is the unknown function, while x and t are the independent
variables, thus f = f (x, t) is a function of x and t. It is often ben-
eficial to write the equation on the form P f = 0, where P is an
operator. The corresponding operator P for Eq. (3.2) would be

P =
∂2

∂x2 − ∂

∂t
. (3.3)

As already mentioned, a range of physical phenomena, including
fluid flow in porous media considered in this book, can be de-
scribed by partial differential equations. Other physical phenomena
described by partial differential equations are the Navier-Stokes
equation, the heat equation, Newton’s equation of motion etc. In
this section on single phase flow in porous media, our unknown
function would be the pressure field p, which is dependent on both When including gravity, the unknown

will not be the pressure field p, but
the head field h. See Sec. 3.2.2 for the
definition of head and how to include
gravity into our flow equations.

position and time.
There is a range of classes of partial differential equations. The

order of a partial differential equation is the highest partial deriva-
Order of a PDEtive in the equation, e.g., Eq. (3.2) is a second order partial differ-

ential equation since the highest partial derivative is the partial
derivative ∂2 f /∂x2 of order two.

A partial differential equation is called linear if it is a linear Linear PDE

combination of the unknown function f and its derivatives. Thus
Eq. (3.2) is a linear partial differential equation, while

∂ f
∂t

∂2 f
∂x2 = 0 (3.4)

is a non-linear partial differential equation. All second order linear
partial differential equation in two variables are therefore on the
form

A
∂2 f
∂x2 + B

∂2 f
∂x∂y

+ C
∂2 f
∂y2 + D

∂ f
∂x

+ E
∂ f
∂y

+ F f + G = 0 . (3.5)
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There are three basic types of second order linear partial differential
equations:

Parabolic: B2 − 4AC = 0

Hyperbolic: B2 − 4AC > 0

Elliptic: B2 − 4AC < 0 ,

where the capital letters are as given in Eq. (3.5). We will encounter
two of these basic types in this section; the parabolic type will de-
scribe transient single phase fluid flow, while the elliptic type will
describe the same equation in steady state.

A partial differential equation that will be recurrent in this book
is the following:

∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 =

∂ f
∂t

, (3.6)

where the function f will be the fluid pressure p. To simplify our
notation, we will use the the nabla symbol ∇ to represent the del
operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z). For a general introduction to
the mathematical notation, see the mathematical notes in Sec. 17.
Taking the dot-product of the del operator with itself, we get The dot product, denoted by a centered

dot ·, of two vectors of equal length
is the sum of the products of the
corresponding vector entries. Thus, for
a⃗ = (a1, a2, a3) and b⃗ = (b1, b2, b3) we
have a⃗ · b⃗ = ∑3

i=1 aibi = a1b1 + a2b2 +
a3b3.

∇ · ∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
·
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
=

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (3.7)

Our Eq. (3.6) then simplifies to

∇2 f =
∂ f
∂t

. (3.8)

Treating the multi-dimensional ∇ similar to the single dimensional
∂/∂x above, this equation is considered as a multi-dimensional
parabolic partial differential equation.

3.2 The diffusivity equation

In this section we will derive the hydraulic diffusivity equation,
which is the fundamental equation for single phase flow in porous
media. The starting point for deriving the diffusivity equation is the
continuity equation for single phase flow, which is an expression of
conservation of mass in a volume element. This will be combined
with the Darcy equation to obtain our diffusivity equation.

The driving forces for transport in porous media is viscous, grav-
ity, capillary and diffusion. As we will start off by only considering
a single fluid phase with a constant fluid composition, capillary
forces and diffusion are not of relevance for us at this moment. We
will introduce the effect of gravity in the subsection on the Darcy
equation, however, as we will consider horizontal 1D flow in the re-
mainder of this chapter, gravity effects will be excluded too. When
we start to consider two phases in Chap. 9 we will introduce capil-
lary forces. Transport by diffusion will not be covered in this book,
as this is of minor importance for most subsurface reservoirs due
to large length scales. However, diffusion will be discussed in the
Sec. 9.4 on numerical diffusion.
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3.2.1 Continuum model
In-depth treatments for topics in this
section can be found in (Whitaker,
1986; Bear, 1988; Torquato, 2001; Bear
and Bachmat, 2012; Battiato et al.,
2019).

Porous media, such as reservoir rocks, are often extremely complex
materials. Modern imaging techniques can characterize the pore
structure of small pieces of rock samples to a high level of accu-
racy. An example of a high-resolution image of a cross-section of
a sandstone is shown in Fig. 3.1. We observe that even in such a
high resolution image of a small sample the pore-matrix interfaces
of this rock is still extremely complex. It is therefore impossible
to carry all information for all pore-matrix interfaces for a whole
reservoir. This push for describing the flow problems at a larger
scale, where the porous material is considered as a continuous ef-
fective medium, and where the flow problems can be described by
a set of continuous variables and differential equations.

Figure 3.1: An image of the
pore structure in a Bentheimer
sandstone. The left image
shows part of a 1.5 inch cylin-
drical core sample, while the
red box is enlarged in the right
image. Some pore filling clay
is highlighted by the circle in
the right image, and represent
pore structure not properly
resolved by the current image
resolution.When considering the porous medium as a continuous medium,

then any volume element we consider must be large enough so that
it still contains something we can consider as a porous medium. If
it is too small, then it might contain only part of a single grain or a
single pore body, and it is no longer a porous medium. So even the
smallest volume elements must contain a large amount of building
blocks of our porous material, i.e., a high number of grains or pore
bodies.

The continuum scale for a porous medium should not be con-
fused with the continuum scale encountered in other parts of sci-
ence, and in particular the continuum scale for fluid dynamics. The
continuum scale (or macroscopic scale) in fluid dynamics means
a scale much larger than the distance between the molecules (con-
sidered as the microscopic scale). However, due to the small size
of molecules, this is still a very small scale compared to the scale
needed for a porous medium continuum scale. When working with
porous media, the microscopic scale will be the scale of the individ-
ual pore bodies or grains, while the macroscopic scale will be the
scale of the effective porous medium consisting of a large number
of individual pore bodies. Thus the microscopic scale for fluid dy-
namics is related to the size of molecules, being nano-meter sized,
while the microscopic scale for porous media is on the size of pores,
being micro-meter sized, so these two scales are several orders of
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Figure 3.2: A figure show-
ing both the pore-scale and
continuum scale of a porous
medium.

magnitude different.
When working on the continuum scale, we need an averaging

volume to obtain our continuum parameters. For this end we define
an elementary volume as a subspace E ⊂ R3 containing the origin. Elementary volume

Since E contains the origin, then for any point x the subspace Ex =

{x + y | y ∈ E} will contain the point x. By abuse of notation we
will use E also for Ex. An example of a widely used elementary
volume is the ball Er of radius r, thus for any x it is the ball of size
r centered at x. See Fig. 3.2 for a two-dimensional representation of
the elementary volume Er.

We will use the elementary volume to define continuum scale
properties: A continuum scale porous medium property at every
point x will be defined as the effective property inside the elemen-
tary volume E. As an example, the porosity at x will be defined
as the fraction of the volume of the pore space inside E to the to-
tal volume of E. By moving the elementary volume E throughout
the space of interest, we assign an effective property value to ev-
ery point x, thereby obtaining a field of the effective value, e.g., a
porosity field.

We observe that the effective properties are dependent on the
size of E (but it can be shown that the continuum scale is indepen-
dent of the shape of E). As an example, if the volume of E goes to
zero, then the porosity will be 1 if x is inside the pore space, and 0
if it is inside the matrix. For a zero-sized E the porosity is no longer
smooth, but will jump between 0 and 1 depending on whether it is
inside or outside the pore space. Thus, for small E the porosity will
vary erratically with position. In general small elementary volumes
tend to give properties that are rapidly varying. Increasing the size
of the elementary volume dampens this variations. This is seen in
Fig. 3.3.

A representative elementary volume is an elementary volume large
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Figure 3.3: A plot showing the
evolution of porosity versus
elementary volume Er size r
in four models with different
porosity. The four images on
the right are cross-sections of
the four models, with void
space in yellow and solid space
in purple.

enough for such rapid variations to disappear. For our purpose we
seek an elementary volume that is large enough for the effective
properties to vary smoothly with position, but still small enough
to capture property changes of interest. Unfortunately, there are For an introduction on how the rep-

resentative elementary volume can be
deduced from the gradient of the effec-
tive properties of elementary volumes
of different size, please confer (Bear
and Bachmat, 2012).

porous media where such length scales do not exist. Their existence
is dependent on the existence of a length scale between the charac-
teristic length on the pore scale and the characteristic scale on the
continuum scale. As depicted in Fig. 3.2, we can define a charac-
teristic length on the pore scale l, a continuum scale characteristic
length L, and a length scale for the elementary volume r. We thus
need that the pore scale characteristic length is much smaller than
our averaging length scale r, which again is much smaller than the
length scale L for changes in the porous medium on the continuum
scale:

l ≪ r ≪ L (3.9)

The existence of a representative elementary volume is the existence
of such a scale r. This will give us well defined continuum scale
parameters as the effective property from the elementary volume
Er. Except for quite artificial special cases (see, e.g., Howes and
Whitaker (1985)), such fields of effective continuum scale parame-
ters are continuous, smooth and differentiable.

3.2.2 The Darcy equation

The flow in subsurface reservoirs differs from flows in channels and
basins as it takes place inside a porous medium consisting of com-
plex networks of interconnected pores. For flow in porous media
there are two essential components: The property of the fluid that
flows through the porous medium, and the geometrical structure
of pore space of the porous medium itself. The fluid properties
are sufficiently described by the viscosity µ and density ρ. The
porous medium properties are more complex, but the essentials
are summed up by the porosity ϕ and permeability k. Porosity has
a clear mathematical definition, already given in the introduction
as the fractional volume of the interconnected pore space to the
total volume. The definition of the permeability is more complex,
as it is a medium property describing the complex geometry of the
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pore space. In essence it is a description of how easy, or fast, a fluid
flows through a porous medium after factoring out the fluid prop-
erties: A medium for which the fluid flow through more easily has
a higher permeability.

Figure 3.4: A sketch of the ex-
periment conducted by Darcy.

The first phenomenological description of permeability comes
from Henry Darcy. Darcy was working on the water system of Di-
jon, and considered the flow of water through filter sand (Darcy,
1856). His famous experiment is outlined in Fig. 3.4, and shows
flow of volume rate Q through a sand pack. He measured the head
of the water, that is the height above a give datum that the water
rise in a column (see Fig. 3.4), close to the inlet hi and outlet ho of
the sand. By changing the angle α of the sand pack, the cross sec-
tional area A and length l of the sand pack, and the volume rate Q
of water going through the sand pack, Darcy noted the relationship

q =
Q
A

∝ −ho − hi
l

, (3.10)

where q is the volumetric fluid flux. The volumetric flux q is also Volumetric fluid flux

called the specific discharge. Note that we can define a volumetric
flux at any scale, also inside the porous medium. It is important
to distinguish between the flow inside the pores, also known as
interstitial flow and often denoted by u, and the effective porous
medium flow as considered by Darcy. To make the distinction clear
we often refer to the volumetric flux as the Darcy velocity when it Darcy velocity

is the effective porous medium volumetric flux we are referring to.
This is the volume of fluid flowing Q per area A of porous medium.
As the amount of fluid flow Q is measured in meter cubed per
second, m3/s, while area A is given in meter squared, m2, then the
volumetric flux have units meter per second, m/s. The volumetric
flux thus has the dimension of a velocity, reflected by the name
Darcy velocity. Note that the average interstitial velocity u is higher
than the Darcy velocity, at least by a factor 1/ϕ.

Darcy investigated water only, thus the viscosity of the fluid was
constant. If one also change the viscosity µ of the fluid, then we
find the relationship

q ∝ − 1
µ

ho − hi
l

. (3.11)

Note that we are using the head, h, which is the driving force.
The pressure at the water-air interface inside the measurement
tubes are atmospheric pressure, pa. Since there is no flow in the
measurement tubes for the head, the pressure inside the tubes is
governed by hydrostatics, thus the pressure at the measurement
point at the sand interface is given by pa + ρgd, where d is the
height between the measurement point and the fluid-air interface in
the measurement tube. Assuming a no-flow situation, Q = 0, then
the pressure difference will be

po − pi = (pa + ρgdo)− (pa + ρgdi) = ρg(do − di) , (3.12)

which is different from zero whenever the angle of the sand pack
α ̸= 0, i.e., whenever the sand pack is not horizontal. Apparently, it
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is not the pressure that is driving the fluid flow, as we then have a
non-zero pressure gradient but no fluid flow. At no flow, Q = 0, the
two heads will be equal, hi = ho, irrespective of the angle α. Darcy
only investigated water, considering fluids with different density
would have given the proportionality

q ∝ − 1
µ

ρg(ho − hi)

l
, (3.13)

where ρ is the fluid density and g is the acceleration of gravity.
Thus it is ρgh that is the potential driving the fluid flow (and not
the pressure).

After including the fluid density and acceleration of gravity, we
obtain the proportionality constant we today call the permeability k,
which yields Darcy’s equation as

q = − k
µ

ρg(ho − hi)

l
. (3.14)

This form of the Darcy equation might be unfamiliar, since it is
using the head instead of pressure. It can be rearranged to an equa-
tion of pressure, using the correspondence

ρg(ho − hi) = ρgho − ρghi

= po + ρgzo − (pi + ρgzi) = po − pi + ρg∆z , (3.15)

where zi = hi − di and zo = ho − do is the height above datum
for the two measurement points, while ∆z = zo − zi is the height
difference between the two measurement points. In differential
form, we then have the Darcy equation as

q = − k
µ

ρg∇h = − k
µ
(∇p + ρg∇z) . (3.16)

Here ∇z denotes the relative change in elevation in the direction of
flow.

It should be noted that in addition to pressure and gravity, also
the kinetic energy should be included in the above equation, so that

q = − k
µ
(∇p + ρg∇z +∇Ek) , (3.17)

where

Ek =
1
V

∫
V

ρu2

2
dV , (3.18)

is the kinetic energy per unit volume, with u⃗ being the interstitial
fluid velocity and V being a representative elementary volume.
However, fluid velocities in reservoirs are both quite small and
quite constant (except near the wells), so the kinetic energy term is
usually neglected.

As reservoirs are typically much more extensive horizontally
than vertically, fluid flow is often close to horizontal. It is therefore
also quite common to disregard the gravity term ρg∇z in the Darcy
equation. However, it is needed for a correct treatment whenever
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we are outside the horizontal flow regime, e.g., when treating wa-
ter flow in soils or CO2 injection where the initial movement of
the CO2 can be close to vertical. However, when disregarding the
gravity term, we obtain the Darcy equation as

q = − k
µ
∇p . (3.19)

Note that we assumed that the total discharge (flow rate) Q was
the same in and out of the system, indirectly we then assumed an
incompressible fluid. For compressible fluids we can express the
Darcy equation in terms of a force potential, Φ:

q = − kρ

µ
∇Φ

Φ =
∫ p

pr

1
ρ(p)

dp + gz
. (3.20)

This force potential Φ is also known as a Hubbert potential, as it
was introduced by King Hubbert in his treaty on ground-water
motion (Hubbert, 1940). Except for an arbitrary constant, the force
potential Φ is proportional to the head so that

∇Φ = g∇h . (3.21)

By taking the gradient of the force potential (3.20) and expressing
it in terms of ∇p and ∇z we see that the three formulations (in
terms of force potential, head, or ∇p and ∇z) are equivalent and
Eq. (3.17) is thus also valid for compressible fluids.

The experiment by Darcy is a pseudo one-dimensional experi-
ment, thus the pressure gradient ∇p and the volumetric flux q are
both in the same direction, and the permeability k is the proportion-
ality constant for this flow direction. In general, we can consider
a three-dimensional system. The pressure field p then give rise to
a vector field ∇p, equivalently the head field gives rise to a vector
field ∇h. Also the volumetric flux is a vector field q⃗. We say that
the permeability is isotropic if it is the same in all directions. If the Isotropic

porous medium is everywhere isotropic, i.e., that the permeability
is isotropic everywhere, then the permeability is a scalar field which
can be represented by the lower case permeability symbol k.

In general, the permeability can be dependent on the direction of
flow. An obvious example would be a porous medium consisting of
a bundle of tubes in only one direction; such a medium will have
high permeability in the direction of the tubes, while no permeabil-
ity in all directions perpendicular to the tubes. For the general case
the permeability is a tensor of order two, which can be described by
a 3 × 3 matrix:

In general a tensor of order two is a
linear operator that produces a vector
when applied to a vector. It can be
shown that the permeability tensor
K is symmetric (i.e., kij = k ji) and
positive definite (i.e., x⃗TKx⃗ for every
x⃗ ̸= 0). See, e.g., Torquato (2001) for a
derivation.

K =

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

 . (3.22)

As seen in the matrix form above, the permeability matrix might
include off-diagonal terms, and the direction of flow will in general
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not follow the pressure gradient. Using tensor notation, the three-
dimensional version of the Darcy equation will then be

q⃗ = −ρg
µ

K · ∇h . (3.23)

Disregarding gravity effects, we have the following form of the

General form of the three-dimensional
Darcy equation

three-dimensional Darcy equation:

q⃗ = − 1
µ

K · ∇p . (3.24)

If the permeability is isotropic, then the off-diagonal terms are
zero, and the diagonal terms are equal, yielding a matrix of the
form

K =

k 0 0
0 k 0
0 0 k

 . (3.25)

Multiplying a vector, e.g., the vector ∇p, which this matrix is equiv-
alent to multiplying by the constant scalar on the diagonal k. Thus
for an isotropic medium the three-dimensional form of the Darcy
equation reduces to the simpler form (again disregarding gravity): Three-dimensional Darcy equation for

isotropic porous media disregarding
gravity

q⃗ = − k
µ
∇p . (3.26)

For simplicity, we will usually consider isotropic media. The exten-
sion to an-isotropic media is fairly straight forward.

3.2.3 Conservation of mass

In this subsection we will derive the equation for conservation of
mass. The conservation of mass equation is, as the name alludes
to, just a mathematical representation of the fact that mass can nei-
ther arise nor disappear, thus the change in mass inside a volume
element must equal what comes in minus what goes out of that
volume element.

n⃗

V

q

q · n⃗

Figure 3.5: A control volume
V, as used for mass balance
derivations. Here the inner
product q⃗ · n⃗ gives the flux
density, which can be inte-
grated over a surface to give
the volume flow.

Assume a volume element V with surface δV = A, and let n⃗ be
the unit normal on the surface pointing out of the volume element,
as indicated in Fig. 3.5. Since the length of the unit normal vector
n⃗ is one, then the local flux density over the surface is given by
the dot product (inner product) q⃗ · n⃗, that is, the projection of the
volumetric flux (Darcy velocity) vector q⃗ in the direction of n⃗, as
shown in Fig. 3.5.

The volume flow over the full boundary A of the volume ele-
ment V is given by the integral of the local flux density as∫

A
q⃗ · n⃗dA . (3.27)

Note that q⃗ might point either into or out of the volume element.
Due to the properties of the dot product, if q⃗ is pointing inwards,
then q⃗ · n⃗ is negative since n⃗ is defined to be pointing outwards.
The integral in Eq. (3.27) is then giving the difference between fluid
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flowing out and fluid flowing into the volume element. The above
equation holds at any scale, thus we could consider the equation
either for the interstitial (pore scale) fluid velocity u⃗ or the effective
continuum scale Darcy velocity q⃗. We will only consider the inte-
gral for a representative elementary volume, where q⃗ is the Darcy
velocity, i.e., the effective volumetric flux through the porous mate-
rial.

As mass is given by volume times density, we see that the
amount of mass out minus mass in is given by∫

A
ρ⃗q · n⃗dA , (3.28)

where ρ is the fluid density.
Let Ω ⊂ V be the pore space inside the volume element V. Then

the mass of fluid inside the volume element is given by the integral
of fluid density ρ inside the pore space:∫

Ω
ρdV . (3.29)

The above integral can be performed at any scale. We will only
operate at a representative elementary volume, where macroscopic
properties such as porosity ϕ and the macroscopic fluid density ρ

are well defined. With these parameters the fluid mass can be given
by ∫

V
ϕρdV . (3.30)

In this last equation, ϕ is the porosity, defined as

ϕ(x) =
∥ΩEx∥
∥Ex∥

, (3.31)

where ΩEx is the pore space inside the elementary volume Ex sur-
rounding the point x.

The pseudo-equation for conservation of mass is

"mass in" − "mass out" = "change in mass"

The difference in mass in and out is given by the negative of Eq. (3.28),
while the change in mass is given by the time derivative of Eq. (3.30).
We then have the conservation of mass equation Conservation of mass in a volume

element

−
∫

A
ρ⃗q · n⃗dA =

∫
V

∂

∂t
(ϕρ)dV . (3.32)

Applying the divergence theorem, we have Gauss divergence theorem is found in
Sec. 17.3.∫

A
ρ⃗q · n⃗dA =

∫
V
∇ · (ρ⃗q)dV , (3.33)

thus we get ∫
V
−∇ · (ρ⃗q)dV =

∫
V

∂

∂t
(ϕρ)dV . (3.34)

Note that in physics it is also common
to derive the equation for conservation
of mass from the law of mass conser-
vation through the Reynolds transport
theorem. To avoid the complications
with the material derivative, we have
chosen a simpler and hopefully more
intuitive approach in this book.

As this equation holds for any volume element (albeit, an el-
ement which is large enough to be a representative elementary
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volume), we can use the localization theorem (see Eq. (17.5) in the
mathematical notes chapter) to get the general mass conservation
equation as:

Equation for conservation of mass.
−∇ · (ρ⃗q) =

∂

∂t
(ϕρ) . (3.35)

The volumetric flux is related to the gradient in pore pressure via
the Darcy equation, as given by Eq. (3.26):

Darcy equationq⃗ = − k
µ
∇p .

Inserting Eq. (3.26) into Eq. (3.35), we get the equation

General equation for single phase flow∇ ·
(

kρ

µ
∇p
)
=

∂

∂t
(ϕρ) . (3.36)

This is the general equation for single phase flow. In this general
form of the single phase flow equation, both permeability k, poros-
ity ϕ, fluid density ρ and viscosity µ might be pressure (and tem-
perature) dependent. It can be further extended by including di-
rectional permeability K, and by including gravity by using head
instead of pressure. Fortunately, for many subsurface problems the
change in pressure is small enough to consider the permeability
and porosity as constant. If we have an equation of state for fluid
density and viscosity, i.e., a description of the fluid density and vis-
cosity as a function of pressure, then we will have a closed system
with a single unknown being the pressure.

For special cases we can simplify the single phase flow equation
further. Assume a constant (i.e. both pressure independent and
spatial constant) permeability k and viscosity µ, then these can be
moved outside the derivative in Eq. (3.36), and we get

k
µ
∇ · (ρ∇p) =

∂

∂t
(ϕρ) . (3.37)

We may expand the derivatives of the product on both sides of
Eq. (3.37), which gives:

k
µ

(
∇ρ · ∇p + ρ∇2 p

)
= ρ

∂

∂t
ϕ + ϕ

∂

∂t
ρ . (3.38)

We will first investigate the left hand side of Eq. (3.38): Com-
pressibility c is a measure of the relative volume change as a re- compressibility

sponse to a pressure change:

c = − 1
V

∂V
∂p

, (3.39)

where V is the volume. The liquid compressibility may be used to
convert derivatives of density into derivatives of pressure. For a
fluid the density ρ = m/Vf is the fraction of mass m divided by the
volume of the fluid Vf . Rewriting, we also have Vf = m/ρ. We can
then derive the fluid compressibility c f as:

c f = − 1
Vf

∂Vf

∂p
= − ρ

m
∂(m/ρ)

∂ρ

∂ρ

∂p
= −ρ

−1
ρ2

∂ρ

∂p
=

1
ρ

∂ρ

∂p
. (3.40)
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Thus, we see that the first term on the left hand side of Eq. (3.38) is

Fluid compressibility: c f =
1
ρ

∂ρ
∂p .

∇ρ · ∇p =
∂ρ

∂p
∇p · ∇p = ρc f |∇p|2 ∝ c f . (3.41)

Since this term is proportional to the compressibility it may be ig-
nored in the low compressibility limit, e.g., when the fluids are
close to in-compressible, such as water and oil. This low compress- Low compressibility limit: c f → 0

ibility limit assumption would not be appropriate for compressible
fluids such as gas.

The general equation for the left hand side of Eq. (3.38) is

ρ
k
µ

(
∇2 p + c f (∇p)2

)
. (3.42)

As presented earlier, ∇2 = ∇ · ∇ is the Laplace operator, which
gives the divergence (∇·) of the gradient (∇) of a function. Using
the low compressibility limit assumption, i.e., assuming c f (∇p)2 ≪
∇2 p, then this is simplified to

ρ
k
µ
∇2 p . (3.43)

The right hand side of Eq. (3.38) can be expressed in terms of the
time derivative of pressure by applying the chain rule,

ρ
∂

∂t
ϕ + ϕ

∂

∂t
ρ = ρ

∂ϕ

∂p
∂

∂t
p + ϕ

∂ρ

∂p
∂

∂t
p

= ρϕ

(
1
ϕ

∂ϕ

∂p
+

1
ρ

∂ρ

∂p

)
∂

∂t
p

. (3.44)

The formation compressibility, cϕ, is defined1 as Formation compressibility: cϕ = 1
ϕ

∂ϕ
∂p

1 It is left to the reader to show, assum-
ing that the sand grains themselves
are incompressible, that the forma-
tion compressibility as defined here
is also equal to the compressibility
of a porous rock sample with total
volume V subject to an increased pore
pressure: cϕ = 1

V
∂V
∂p .

cϕ =
1
ϕ

∂ϕ

∂p
, (3.45)

and

Total compressibility: ct = c f + cϕ

ct = c f + cϕ , (3.46)

is called total compressibility. For consolidated sandstone material
the rock compressibility is often negligible compared to the fluid
compressibility. On the other side, for unconsolidated sands and
soils the rock compressibility could be much larger than the fluid
compressibility.

Using the total compressibility, Eq. (3.44) can be simplified to

ρ
∂

∂t
ϕ + ϕ

∂

∂t
ρ = ρϕct

∂

∂t
p . (3.47)

Equating left (Eq. 3.43) and right (Eq. 3.47) hand side of Eq. (3.38),
and then dividing by ρϕct we get

k
µϕct

∇2 p =
∂

∂t
p . (3.48)

This is the (hydraulic) diffusivity equation which is the fundamental
equation for single phase flow in the low compressibility limit. The
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diffusivity equation is simpler than the general single phase flow
equation given by Eq. (3.36). This simplicity came at the expense
of the applicability range: The diffusivity equation is assuming the
low compressibility limit, thus it is not applicable to, e.g., gases
which are highly compressible. A more general form of the diffu-
sivity equation that does not assume a low compressibility limit
is

η
(
∇2 p + c f (∇p)2

)
=

∂

∂t
p . (3.49)

The hydraulic diffusivity equation is a multi-dimensional parabolic
partial differential equation, and it arises several places in physics;
diffusion, heat conduction, electrical conduction etc. The quantity

Hydraulic diffusivityη =
k

µϕct
(3.50)

is called the (hydraulic) diffusivity. The unit for hydraulic diffusiv-
ity η is

[η] =
[k]

[µ][ϕ][ct]
=

m2

(Pa · s)(Pa−1)
=

m2

s
, (3.51)

where we use that porosity ϕ is dimensionless. The ϕct part of the
hydraulic diffusivity is called the storativity.

Using the η notation for the diffusivity, we get the following
simplified diffusivity equation:

The (hydraulic) diffusivity equation

η∇2 p =
∂

∂t
p . (3.52)

The diffusivity η determines how fast pressure signals move through
the reservoir, but it is important to note that the signal moves by a
diffusion process, where the actual speed decreases as it spreads.
This is very different from a seismic pressure wave which move at
constant velocity.

By investigating the different elements of the diffusivity η in
Eq. (3.50), we observe that a pressure disturbance moves faster in a
high permeable reservoir than in a low permeable reservoir. On the
other hand, increased porosity, viscosity or compressibility reduces
the speed of the pressure signal.

Given constant boundary conditions, the diffusivity equation
will converge to a steady state solution with time. At steady state,
the time derivative is zero, giving the equation

∇2 p = 0 . (3.53)

We observe that this equation is an elliptic linear partial differen-
tial equation. This equation is also known as the Laplace equation,
named after the french mathematician Pierre-Simon Laplace who
formulated and studied this type of equations. The Laplace oper-
ator ∆ = ∇2 is also named after him. Laplace used this operator
to study the motion of objects in outer space, and solutions to the
Laplace equation are called harmonic functions.
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3.3 Analytical 1-dimensional solution

We will now investigate an analytical 1-dimensional solution for
single phase flow for a slightly compressible fluid (e.g. water). The
underlying partial differential equation is the diffusivity equation
given by Eq. (3.52). In one direction, here being the x-direction, we
can reduce Eq. (3.52) to its one-dimensional form:

1D diffusivity equationη
∂2 p
∂x2 =

∂p
∂t

. (3.54)

The right hand side of Eq. (3.54) gives the time dependency of the
equation. The equation thus describe the transient evolution of the
pressure distribution.

When there is no change with time, the system is at steady state.
As ∂p/∂t = 0 at steady state, Eq. (3.54) simplifies to

1D steady-state equation
∂2 p
∂x2 = 0 , (3.55)

at steady state.

l

z
y
x

Figure 3.6: The pseudo-1D
slab, where the cross-sectional
area is constant.

Consider a 1D porous medium of length l and permeability k.
Equivalently, we can consider a 3D slab of porous material with
constant permeability k and constant cross-sectional area in the
y − z direction as depicted in Fig. 3.6. To apply the 1D diffusivity
equation, Eq. (3.54), we need the pressure gradient perpendicular to
the x-direction to be zero, i.e. ∂p/∂y = ∂p/∂z = 0. These restric-
tions hold if they hold initially (i.e. at time zero), we have no-flow
boundary conditions on all sides except the end-plates, and we dis-
regard gravity. In the remainder of this subsection we will consider
the flow problem as a pure one-dimensional problem, as given by
Eq. (3.54).

We want Eq. (3.54) to hold inside a region in the coordinate
system given by the variables (x, t). We want our spatial variable x
to be bounded, in our case between 0 and l as indicated in Fig. 3.6.
The time variable is only bounded on one side, i.e. by the start time
t0. For simplicity, we usually let t0 = 0. The (x, t) region is shown
in Fig. 3.7.

t

x

0 l

Figure 3.7: Figure indicating
the region where Eq. (3.54)
holds, i.e. for all t > 0 and all
x ∈ [0, l].

To describe our problem, we need an initial condition and
boundary conditions in addition to Eq. (3.7). The initial condition
is to specify the pressure distribution at a given time, e.g., at time
t = 0. Thus, our initial condition is defined as

p(x, 0) = i(x) | x ∈ [0, l] . (3.56)
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In general, the boundary conditions consist of

a0
∂p(0, t)

∂x
+ b0 p(0, t) = g0(t) (3.57)

al
∂p(l, t)

∂x
+ bl p(l, t) = gl(t) , (3.58)

where the first derivative term gives a rate control, while the second
term gives a pressure control. A more in-depth presentation of
boundary conditions will be given in Sec. 4.5.

For our problem we will consider a boundary condition consist-
ing of a pressure control only, being a constant pressure at the left
and right ends; p(0, t) = pl and p(l, t) = pr (where the subscripts
indicate left and right). Further, we assume as initial condition that
the pressure everywhere equals the right side pressure; p(x, 0) = pr.

Given our initial conditions and boundary conditions, we now
want to solve the general pressure equation given by Eq. (3.54).
For this end, we assume that the pressure can be described as a
product of two functions; one function dependent only on x and
one function dependent only on t: This solution technique is called

separation of variables, and was first
proposed by Joseph Fourier in 1822.p(x, t) = X(x)T(t) . (3.59)

Using the pressure function given by Eq. (3.59) into the partial
differential equation Eq. (3.52), we obtain:

η
∂2 p
∂x2 =

∂p
∂t

η
∂2XT
∂x2 =

∂XT
∂t

ηT
∂2X
∂x2 = X

∂T
∂t

X′′(x)
X(x)

=
T′(t)
ηT(t)

. (3.60)

Since the right hand side is dependent on x only, and the left hand
side is dependent on t only, both sides must equal a constant C.
This gives the following two independent equations:

X′′(x) = CX(x)

T′(t) = CηT(t) . (3.61)

Let us first consider the case of C = 0. Then T′(t) = 0, so T(t) is
a constant. When X′′(x) = 0, then X′(x) = E for a constant E, and
X(x) = Ex + F for E and F constants. As T(t) was also merely a
constant, then X(x)T(t) = Ex + F, where we have just updated the
constants E and F after multiplication with the constant T(t). Thus
Ex + F is a solution to Eq. (3.54). For any C ̸= 0 we can always add
the C = 0 solution to X(x)T(t) and still have a solution. Thus, in
general,

X(x)T(t) + Ex + F , (3.62)

is a solution to Eq. (3.54) whenever X(x)T(t) is a solution to Eq. (3.54).
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Let now C ̸= 0, then

T(t) = DeCηt , (3.63)

would be possible solutions for T′(t) = T(t).
Let us now consider the case of C > 0: Then

X(x) = Ae
√

Cx + Be−
√

Cx , (3.64)

would be possible solutions for X′′(x) = X(x). Since C > 0, then
T(t) → ∞ whenever t → ∞. It is therefore not possible to find a
solution that fits our boundary conditions for C > 0.

So we are only interested in the solutions when C < 0. Then the
possible solutions for X(x) and T(t) are given by:

X(x) = A sin
(√

−Cx
)
+ B cos

(√
−Cx

)
T(t) = DeCηt . (3.65)

In Eqs. (3.65) all the capital letters are constants. We are considering
the product X(x)T(t), thus we can multiply the constants A and B
by D, and thereby remove the D in front of the exponential func-
tion. By abuse of notation, we can then assume that the constant
D = 1, and keep the same notation for the A and B constants.

As explained above, when X(x)T(t) is a solution, so is also

X(x)T(t) + Ex + F =(
A sin

(√
−Cx

)
+ B cos

(√
−Cx

))
eCηt + Ex + F , (3.66)

since the Ex + F part disappears in the derivations ∂2/∂x2 and ∂/∂t.
Let us consider Eq. (3.66) with respect to our boundary condi-

tions. We start with the left boundary condition p(0, t) = pl . We
have eCηt = 1 for t = 0 and eCηt → 0 when t → ∞. Since x = 0, both
the sin-term and x-term disappears. Thus we have F = pl − B for
t = 0 and F = pl for t → ∞, thus B = 0.

For the right boundary condition p(l, ∞) = pr we again have
eCηt → 0, yielding El + pl = pr when t → ∞, so E = (pr − pl)/l. For
p(l, 0) = pr we then see that the sin-term must vanish, thus we have√
−C = iπ/l for an integer i. We then see that

X(x)T(t)+ Ex+ F = A sin
(

iπx
l

)
e−

i2π2η

l2
t
+

pr − pl
l

x+ pl . (3.67)

is a solution to the differential equation Eq. (3.54). However, this
is a solution for any integer i. Any sum of the X(x)T(t)-part
of Eq. (3.67) would yield a solution to the differential equation
Eq. (3.54). Thus the following expression will also be a solution

X(x)T(t) + Ex + F = ∑
i

Ai sin
(

iπx
l

)
e−

i2π2η

l2
t
+

pr − pl
l

x + pl .

(3.68)
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The last boundary condition is the initial condition that p(x, 0) =

pr. For t = 0 we have T(t) = 1, which gives the equation

∑
i

Ai sin
(

iπx
l

)
+

pr − pl
l

x + pl = pr

pr − pl −
pr − pl

l
x = ∑

i
Ai sin

(
iπx

l

)
. (3.69)

We can then use Fourier series to find an expression for the factors
Ai as:

Ai =
2
l

∫ l

0

(
pr − pl −

pr − pl
l

x
)

sin
(

iπx
l

)
dx . (3.70)

This gives a solution p(x, t) to the differential equation Eq. (3.54)
with the boundary conditions p(x, 0) = pr, p(0, t) = pl and p(l, t) =
pr as

p(x, t) =
∞

∑
i=1

Ai sin
(

iπx
l

)
e−

i2π2

l2
ηt
+

pr − pl
l

x + pl , (3.71)

where the pre-factors Ai are as given by the integral in Eq. (3.70).
Let us now investigate the steady state solution. At steady state

we have equation Eq. (3.55). By integration, we then obtain the
function for the steady state solution as

∂2 p
∂x2 = 0

∂p
∂x

= A

p(x) = Ax + B , (3.72)

where A and B are constants. The left boundary condition gives
p(0) = pl = B. The right boundary condition gives p(l) = pr =

Al + pl , thus A = (pr − pl)/l. This gives the following steady state
solution:

1D steady state single phase equation.p(x) = (pr − pl)
x
l
+ pl . (3.73)

This stead-state solution is plotted in Fig. 3.8.
We see that when t → ∞, then the exponential term in Eq. (3.71)

goes to zero. Thus

p(x, ∞) = p(x) = (pr − pl)x/l + pl (3.74)

equals the steady-state solution. We thus see that our solution con-
verge to the stead-state solution at infinite time. l

pr

pl

Figure 3.8: Single phase
steady state solution for a
1-dimensional system.

If we change the initial pressure distribution p(x, 0) = g(x) to
any function g(x) different from the constant pr, then we will get
other pre-factors Ai. However, these pre-factors disappear when
t → ∞ as the exponential function goes to zero. Thus any initial
pressure distribution will converge to the same steady-state solu-
tion.

Going back to our original boundary conditions, we said that
the initial pressure was equal to the right boundary pressure, i.e.
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g(x) = p(x, 0) = pr. We then have

g(x)− pr − pl
l

x − pl = (pr − pl)
(

1 − x
l

)
= pa

( x
l
− 1
)

, (3.75)

where pa = pl − pr. Using Fourier series, as given in Eqs. (3.70) we
obtain the pre-factors

Here we are using integration by parts
to get

∫
x sin(x)dx =

∫
cos(x)dx −

x cos(x).

Ai =
2pa

l

(∫ l

0

x
l

sin
(

iπx
l

)
dx −

∫ l

0
sin
(

iπx
l

)
dx
)

=
2pa

l

([
l

i2π2 sin
(

iπx
l

)
− x

iπ
cos

(
iπx

l

)]l

0
+

[
l

iπ
cos

(
iπx

l

)]l

0

)

=
2pa

l

(
− l

iπ
(−1)i +

l
iπ

(−1)i − l
iπ

)
= −2pa

iπ
. (3.76)

Invoking Eq. (3.71) this gives the following solution to the differen-
tial equation Eq. (3.54):

Analytical solution to the one-
dimensional diffusivity equation

p(x, t) =
∞

∑
i=1

−2pa

iπ
sin
(

iπx
l

)
e−

i2π2

l2
ηt
+

pr − pl
l

x + pl

=
2
π
(pr − pl)

∞

∑
i=1

1
i

sin
(

iπx
l

)
e−

i2π2

l2
ηt
+

pr − pl
l

x + pl .

(3.77)

This is the analytical solution to the one-dimensional diffusivity
equation. We will use this equation repeatedly in the following
chapters.

The approximation through a Fourier sum is most challenging
around abrupt changes. To investigate how well the Fourier ap-
proximation is, we start to investigate the negative of the Fourier
series part of Eq. (3.77):

p(x, t) =
∞

∑
i=1

2pa

iπ
sin
(

iπx
l

)
(3.78)

This is the Fourier series of a sawtooth function, which can be im-
plemented in Python for a finite sum as follows:

def sawtoothWave(afx,fLength,fPressureAmplitude,inn):

afSum=0.0

for ii in range(1,inn+1):

afSum+=np.sin(ii*math.pi*afx/fLength)/ii

afPressure=(2.0*fPressureAmplitude/math.pi)*afSum

return afPressure

Note that in Python the indention
(i.e. the number of space and tabs at
the beginning of a line) determines
how the statements are grouped. In
this piece of code, all lines after the
def call have been indented with the
same number of leading spaces, and
are therefore one group. Note that it
is good practice to use either space or
tab, and not a mixture, since different
operating systems are non-compatible
in the interpretation of such characters.

Here inn is the number of elements in the sum. The larger the
number inn, the closer we get to the sawtooth function. We can
then calculate the function for different numbers of inn:

The lines starting with plt.plot are
wrapped here (indicated by a hooked
red arrow) for visualization purposes
only. You can not break a line in
Python, as it then will be interpreted
as two statements.

afx=np.arange(-2.0,2.0,0.01)

fLength=1.0

fPressureAmplitude=1.0

plt.plot(afx,sawtoothWave(afx,fLength,fPressureAmplitude,1),label=

↪→ ’1’,color=’r’)
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plt.plot(afx,sawtoothWave(afx,fLength,fPressureAmplitude,2),label=

↪→ ’2’,color=’b’)

plt.plot(afx,sawtoothWave(afx,fLength,fPressureAmplitude,5),label=

↪→ ’5’,color=’y’)

plt.plot(afx,sawtoothWave(afx,fLength,fPressureAmplitude,10),label

↪→ =’10’,color=’g’)

plt.plot(afx,sawtoothWave(afx,fLength,fPressureAmplitude,1000),

↪→ label=’1000’,color=’k’)

This plots as shown in Fig. 3.9.
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Figure 3.9: Solutions to the
sawtooth wave equation for
different summation values
inn. We observe that the func-
tion converges to the sawtooth
wave shape.

Observe that for a negative amplitude −pa, the sawtooth func-
tion will be inverted.

We will now return to the original problem; the solution given
by Eq. (3.77). This is an analytical solution of the transient pressure
development in the slab. It may be seen from the solution that as
time becomes large, the exponential term approaches zero, and the
solution becomes the steady state solution.

The Eq. (3.77) can be implemented in Python as:

def analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,fTime,inn):

afSum=0.0

for ii in range(1,inn+1):

afSum+=np.sin(ii*math.pi*afx/fLength)*np.exp(-ii**2*math.

↪→ pi**2*fEta*fTime/(fLength**2))/ii

afPressure=fLeftPressure+(fRightPressure-fLeftPressure)*(afx/

↪→ fLength+(2.0/math.pi)*afSum)

return afPressure

We see that we need a large enough value inn for the solution to
converge. We calculate the function for different numbers of inn:

afx=np.arange(-2.0,2.0,0.01)

fLength=1.0

fEta=1.0

fLeftPressure=2.0

fRightPressure=1.0
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fTime=5E-2

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,fTime,1),label=’1’,color=’r’)

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,fTime,2),label=’2’,color=’b’)

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,fTime,5),label=’5’,color=’y’)

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,fTime,10),label=’10’,color=’g’)

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,fTime,100),label=’100’,color=’k’,linestyle=

↪→ ’dashed’)

This plots as shown in Fig. 3.10. We cannot observe any change
to the plot for inn > 5, thus the solution seems to converge quite
rapidly for the given time step.
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Figure 3.10: Convergence of
the analytical solution by in-
creasing the values of inn.
We observe that the function
converges.

We now want to investigate how the solution develops over time,
by calculating the analytical solution (with a high enough value
inn) for different times:

fEta=1.0

fLeftPressure=2.0

fRightPressure=1.0

inn=1000

plt.figure()

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,1E-2,inn),label=’1E-2’,color=’r’)

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,5E-2,inn),label=’5E-2’,color=’b’)

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,1E-1,inn),label=’1E-1’,color=’y’)

plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,5E-1,inn),label=’5E-1’,color=’g’)
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plt.plot(afx,analytical1DSolution(afx,fLength,fEta,fLeftPressure,

↪→ fRightPressure,1.0,inn),label=’1’,color=’k’)

This plots as shown in Fig. 3.11. We observe that the analytical
solution for different times converge to the steady state solution.
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Figure 3.11: The analytical
solution for different times.
We observe that the pressure
converge towards the steady
state solution.
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Figure 3.12: The gradient of
the pressure curve at the outlet
versus time. The pressure gra-
dient can be viewed as a proxy
for the outflow on the right
side of our model.

Remember from the Darcy equation that the flow rate is propor-
tional to the pressure gradient. Thus the pressure gradient at the
outlet would be a proxy for the outflow (production) at the right
side. If we plot the pressure gradient at the outlet we get the curve
shown in Fig. 3.12. We observe that is takes a while before the pres-
sure pulse reach the right side of our one-dimensional model. After
reaching the outlet, the outflow start to rise quickly, before it con-
verge towards a steady state rate.

The time it takes for the effect of the pressure change at the in-
let to reach the outlet is dependent on the hydraulic diffusivity
(Eq. (3.50)). For most reservoirs the variation in porosity is small
compared to the variation in permeability, while the viscosity and
compressibility can be estimated from fluid and core samples. The
dominating unknown parameter in the hydraulic diffusivity is
therefore the permeability. From the time of pressure changes at
the outlet of our one-dimensional model one can then estimate the
permeability. Analogously, changing the pressure in one well and
observing the pressure response in another well can be used to es-
timate the permeability between the wells in a reservoir. However,
the pressure response is also dependent on the geometry of the
reservoir.

3.4 Exercises
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Exercise 3.1 Create a Python script to calculate the analytical solu-
tion for the pressure. The basic data is given in Table 3.1.

SPE Metric SI
l 200 m 200 m
k 100 mD 1.0 × 10−13 m2

µ 1 cP 1 × 10−3 Pa s
ϕ 0.2 0.2
ct 1 × 10−4 bar−1 1 × 10−9 Pa−1

pl 200 bar 2 × 107 Pa
pr 100 bar 1 × 107 Pa

Table 3.1: Data for exercise.

a) Plot the pressure function for a set of times that illustrate the
transient period.

b) Do a sensitivity study to investigate how the permeability and
porosity affects the pressure changes (hence, pick a time when
the pressure distribution is in the transient range, and simulate
the pressure for a set of different permeability and porosity
values around the original values).

Exercise 3.2

Water tank

Sandpack

Figure 3.13: A sketch of the
water delivery system.

Assume that you have a water delivery system at your cabin,
consisting of a tank of water pressurized to 5 × 105 Pa, and a
10 m long sand pack between the pressurized water tank and your
faucet. An outline of the system is shown in Fig. 3.13. Assume that
the sand pack has a permeability of 1 × 10−12 m2 and a porosity of
0.3. Other properties are as in Table 3.1.

Calculate the pressure gradient ∂p/∂x at the water faucet versus
time. If we say that we open the faucet at time t = 0, and that
the water faucet is placed at x = 10, what is happening with the
pressure gradient

lim
t→0

∂p(10)
∂x

(3.79)

Exercise 3.3
If we use the Darcy equation with the gravity term included

to replace the Darcy velocity q in Eq. (3.35), derive the hydraulic
diffusivity equation, now with the gravity term included.





4
Finite differences

All I want is the truth,
Just give me some truth

Gimme Some Truth - John Lennon

Analytical solutions for single phase flow are only obtainable for
very simple cases, such as the 1-dimensional case considered in the
previous chapter. Variations in geometries, rock properties, fluid
properties and boundary conditions are in general not possible to
solve analytically. Thus, for more realistic reservoir problems we
need to solve the equations numerically. The analytical solutions
for the simplified cases are still valuable as a comparison for the
numerical methods.

In mathematics a finite difference is an expression of the form
f (x + a)− f (x − b) for a function f . If we divide this finite differ- Finite differences were introduced by

Brook Taylor in his paper Methodus
Incrementorum Directa et Inversa (Tay-
lor, 1715). They were introduced to
study vibrating strings. Taylor also
introduced Taylor series, which we will
return to later in this chapter.

ence by a + b we get the finite difference quotient

f (x + a)− f (x − b)
a + b

. (4.1)

When both a and b goes to zero, this difference quotient converge
to the derivative of f for smooth functions f . Thus difference quo-
tients can be used to approximate derivatives. In contrast to the
mathematical term, we will use the term finite difference to describe
numerical methods which use finite difference quotients to approxi-
mate derivatives.

In this chapter we show how to solve partial differential equa-
tions by the finite difference method, where we replace the partial
derivatives by finite difference quotients and solve the resulting
algebraic system. We will introduce different types of finite differ-
ence quotients which are used to replace the partial derivatives. We
will also give a brief introduction on discretization of the system;
spatially into a grid, and time into discrete time-steps, and we will
present boundary conditions for our system.

4.1 Explicit and implicit Euler methods

As an introduction to finite differences, we will start looking at two
different Euler methods; the explicit or forward Euler method and
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the implicit or backward Euler method. These Euler methods are
numerical methods for solving ordinary differential equations.

The difference between the explicit and implicit method is con- Explicit versus implicit

cerned with which step you are evaluation the state of your sys-
tem. An explicit method calculate the state of the system at a later
step by evaluating the system at the current time step. Contrary,
an implicit method calculate the state of the system by solving an
equation containing both the current and later state of the system.

Let us start with the explicit Euler method. Assume a function Explicit Euler method

f (x) given by the ordinary differential equation

∂ f
∂x

= g(x, f ) , (4.2)

where g is a function, together with an initial value f (x0) = f0.
While the full curve f initially is unknown, the derivative can be
calculated since we know the function g(x, f ). The rational behind
the explicit Euler method is to approximate the curve by small steps
along the tangent line given by the derivative. For a small enough
step size, the difference between the tangent line and the curve is
small, thus this gives a fair approximation.

The starting point (x0, f0) is known, thus the next point along the
curve can be approximated as

f (x1) ≃ f (x0) + f ′(x0)(x1 − x0) . (4.3)

This will approximate f (x1). Note that we could have chosen to
evaluate the derivative f ′(x) at any point between x0 and x1: The
explicit method is to evaluate it at the current point, i.e., evaluate
it at the point x0. As mentioned, for the implicit method we will
evaluate the derivative at the next point x1.

Unfortunately, when we iterate this process, the error from the
previous approximations are propagating through the subsequent
approximations:

f (xn) ≃ f (xn−1) + f ′(xn−1)(xn − xn−1) . (4.4)

In other words, the error in the approximation for f (xn−1) will be
kept in the approximation for f (xn). Even though the errors are
propagating forward, the explicit Euler method is a fair approxima-
tion as long as the step sizes are kept small enough.

Figure 4.1: A sketch of the
example case of water being
injected into a porous medium
initially filled with oil, and
where any excess fluids over-
flow and leaves the porous
medium.

As an example, assume we have a porous medium initially filled
with oil, as depicted in Fig. 4.1. Thus the oil saturation so at time
step zero t0 is so(t0) = 1. In this example we assume that we inject
water into the porous medium at a rate Q. The pore volume of the
porous medium is Vp. As water and oil are fairly incompressible,
we assume that fluids leave the porous medium (e.g. overflows) at
the same rate as water is injected. Further, assume that the fraction
of oil in the fluid leaving the medium is given by

fo = so , (4.5)

thus the fraction of oil in the fluid leaving the medium is the same
as the fraction of oil inside the porous medium. For this to happen,
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we would need full mixing inside the porous medium. Fortunately,
we will not deal with the realism of this example.

We can then formulate a differential equation describing the
change in oil saturation in the medium from the following mass
balance:

Vp
∂so

∂t
= −Q fo = −Qso . (4.6)

The left side of the equation above gives the change in oil volume
inside the porous medium per time. As we only inject water, the
change in volume of oil inside the porous medium must equal the
amount of oil leaving the porous medium, which is given by the
right side of the equation. Dividing by Vp on both sides shows that
the change in oil saturation is proportional to the amount of oil in
the porous medium:

∂so

∂t
= − Q

Vp
so , (4.7)

with initial value so(t0) = so(0) = 1. We immediately recognize
this as the Euler function so(t) = e−Qt/Vp , but for now assume that
the analytical solution is unknown so that the equation has to be
approximated by a numerical method.

For our numerical scheme, let us use a constant time step ∆t =

tn+1 − tn. With an explicit Euler method we evaluate our function at
the current time step, thus

so(tn+1) ≃ so(tn) + s′o(tn)∆t

= s(tn)−
Q
Vp

so(tn)∆t = so(tn)

(
1 − Q∆t

Vp

)
. (4.8)
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Figure 4.2: Solutions to the
explicit Euler method for dif-
ferent step sizes.

Starting with so(0) = 1 and iterating forward, we get

so(tn) = so(tn−1)

(
1 − Q∆t

Vp

)
= so(t0)

(
1 − Q∆t

Vp

)n
=

(
1 − Q∆t

Vp

)n
. (4.9)

The resulting saturation values when using step size ∆t = 1,
∆t = 0.5 and ∆t = 0.1 are shown in Fig. 4.2, where we have used
a value of Q/Vp = 1. We observe that we need a small step size
to obtain a good approximation. This is a recurring problem with
numerical methods; the approximation is dependent on step size.

As we have seen, in the explicit Euler method we choose to eval-
uate the function in the previous step. We could as well have eval-
uated the derivative at any point between tn and tn+1 for the n-th
iteration (or between xn and xn+1 if our free variable was x instead
of t). The implicit Euler method , on the other hand, is evaluating
the function at the next step, thus

Implicit Euler methodf (xn+1) ≃ f (xn) + f ′(xn+1)∆x . (4.10)

If we return to our example ∂so/∂t = −Qso/Vp, but this time use
the implicit Euler method, we get

so(tn+1) ≃ so(tn)−
Q∆t
Vp

so(tn+1) . (4.11)
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We see that we end up with an algebraic equation that has to be
solved, with the solution

so(tn+1) =
so(tn)

1 + Q∆t
Vp

. (4.12)
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Figure 4.3: Solutions to the
explicit Euler method for dif-
ferent step sizes.

Iterating, we have the algebraic equation

so(tn+1) = so(t0)
1(

1 + Q∆t
Vp

)n+1 =

(
1 +

Q∆t
Vp

)−n−1
. (4.13)

We have plotted the approximations for step sizes of ∆t = 1,
∆t = 0.5 and ∆t = 0.1 in Fig. 4.3. We observe the resemblance
with the explicit method, however the implicit method seems to
be working better for the longer step size of ∆t = 1. This is not a
coincidence; implicit methods tends to be more stable, as we shall
see in the next sections. However, implicit methods are in general
more complicated to solve, as we need to solve an algebraic equa-
tion. Solving this equation can be computationally demanding.
Thus we gain stability and convergence for the cost of using more
computational power. Typically, stability and convergence trumps
computational power, thus implicit methods are in general the pre-
ferred methods.

As already mentioned several times, we could as well have eval-
uated the derivative at any point between tn and tn+1 for the n-th
iteration. The Crank-Nicolson method is evaluating the function at Crank-Nicolson method

tn−1/2, however, with approximating the half-way as an average
between tn and tn+1:

f (xn+1/2) ≃ f (xn) + f ′(xn+1/2)∆x

≃ f (xn) +
1
2
(

f ′(xn) + f ′(xn+1)
)

∆x . (4.14)

Again, we will end up with an algebraic equation, and it can be
shown that the solution to this algebraic equation gives

so(tn) = so(t0)

1 − Q∆t
2Vp

1 + Q∆t
2Vp

n

. (4.15)

The resulting approximation for different step lengths are shown in
Fig. 4.4. We see that this approximation is superior to the other two
approximations, and it can be shown that the error in the Crank-
Nicolson method is of a higher order than the explicit and implicit
methods.
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Figure 4.4: Solutions to the
Crank-Nicolson Euler method
for different step sizes.

As a last example, consider the equation

∂ f
∂x

= f . (4.16)

This is similar to our equation Eq. (4.7), however, with a switched
sign in front of f . Here the solution is ex.

Using an implicit Euler method and a constant step size ∆x =

xn+1 − xn, we get

f (xn+1) = f (xn) + f ′(xn+1)∆x = f (xn) + f (xn+1)∆x , (4.17)
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which by rearranging and iterating gives

f (xn+1) = f (x0) (1 − ∆x)−n−1 . (4.18)

We see from our last equation that a step length ∆x = 1 would
give division by zero, thus not a solution. If we choose the step size
longer than 1, we see that we divide by a negative number, thus our
solution will start to oscillate. These are other known issues with
numerical approximations; the numerical solutions can in some
cases not exist, they could diverge, or could start to oscillate. While
the Crank-Nicolson method could be shown to have a smaller error,
it is more prone to such issues, and is therefore seldom used to
solve reservoir simulation problems.

4.2 Difference quotients

We have now seen how the Euler methods can solve ordinary dif-
ferential equations. Solving partial differential equations is based
on similar ideas: For our finite difference method we need to ap-
proximate the derivatives by difference quotients. In the following
we will present first and second difference quotients. For this, we
will utilize Taylor series.

Let us start by considering the derivatives as limits. The first
derivative can be defined as the limit

∂ f (x, y, z, t)
∂x

= lim
∆x→0

f (x + ∆x, y, z, t)− f (x, y, z, t)
∆x

. (4.19)

If we do not go all the way to the limit, but use a finite (but small)
value of ∆x instead, we obtain a difference quotient. Thus, for a The difference quotient is sometimes

called the Newton quotient or the
Fermat’s difference quotient.

finite (but small) ∆x, the expression

f (x + ∆x)− f (x)
∆x

, (4.20)

is a different quotient. In particular, this is a forward difference
quotient, while

f (x)− f (x − ∆x)
∆x

, (4.21)

is a backward difference quotient. Without saying so, we used the
forward difference quotient to get our explicit Euler method and
the backward difference quotient to get the implicit Euler method
in the previous section.

For the derivative in Eq. (4.19), we could as well have replaced
the forward difference quotient with the backward type, it is just a
convention to use the forward type. Do note that for non-smooth
functions, the forward and backward definitions can give different
results. Since the limit gives the derivative, the difference quotient
will be an approximation for the derivative. We see that the approx-
imation gets better the smaller we choose ∆x.

In this section we will present several difference quotients and
investigate how good of an approximation these difference quo-
tients are. While the development in this section holds for all the
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partial derivatives, including the three spacial directions and time
as indicated in Eq. (4.19), we will only use the derivative with re-
spect to x in our development to keep the notation simpler.

4.2.1 Taylor series

Taylor series are widely used in deriving methods for numerical
solutions. A Taylor series is an approximation of a function f (x) Taylor series

around a single point a by an infinite sum of terms that are calcu-
lated from the values of the function’s derivatives at the given point
a:

f (a)+
f ′(a)

1!
(x− a)+

f ′′(a)
2!

(x− a)2 +
f ′′′(a)

3!
(x− a)3 + . . . . (4.22)

By Taylor’s theorem, we can express the function f (x) as

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 +
f ′′′(a)

3!
(x − a)3 + . . .

+
f (k)(a)

k!
(x − a)k +

f (k+1)(ξ)

(k + 1)!
(x − a)k+1 , (4.23)

where the last term is the remainder on the Lagrange form, where

Note that there are conditions on the
function f and the distance between x
and a for Eq. (4.23) to hold. For some
functions there exist points a where
the Taylor series does not converge,
e.g., log(x + 1) when a = 0 and x > 1.

ξ is a real valued number between x and a. Thus the Taylor se-
ries transform a smooth function, i.e., a function that is infinitely
differentiable, into a polynomial. This method is based on the fun-
damental theorem of calculus and integration by parts.

As an example, let us consider the function f (x) = sin(x). We
see that the Taylor series around a point a is

sin(x) = sin(a) +
cos(a)

1!
(x − a)− sin(a)

2!
(x − a)2

− cos(a)
3!

(x − a)3 +
sin(a)

4!
(x − a)4 + . . . . (4.24)

If we expand this function around a = 0, we see that all the terms
sin(a) = sin(0) = 0 vanish, and we get the Taylor series A Taylor series around the value a = 0

is also called a Maclaurin series.

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ . . . . (4.25)

We have plotted the Taylor series for sin(x) around point a =

0 for different number of terms in Fig. 4.5. Adding terms in the
Taylor series enlarge the distance from a where we have a good
approximation of the function. It can be shown that the infinite
series converge to sin(x) for all x.

4.2.2 First-difference quotients

By rewriting (substituting x by x + ∆x and a by x), we obtain the
following equality

f (x + ∆x) = f (x) +
∆x
1!

f ′(x) +
∆x2

2!
f ′′(x) +

∆x3

3!
f ′′′(x) + . . .

+
∆xk

k!
f (k)(x) +

∆xk+1

(k + 1)!
f (k+1)(ξ) , (4.26)
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Figure 4.5: Different number of
terms in the Taylor series for
sin(x) around point a = 0. The
highest power in the Taylor
series indicate the number of
terms, thus sin(x) ≃ x − x3/6
is said to have 3 terms (how-
ever, one of them is zero).

where ξ is a number between x and x + ∆x. Consider the Taylor
series

f (x + ∆x) = f (x) +
∆x
1!

∂ f (x)
∂x

+
∆x2

2!
∂2 f
∂x2 (ξ) . (4.27)

If we solve for ∂ f (x)/∂x, we obtain

∂ f (x)
∂x

=
f (x + ∆x)− f (x)

∆x
− ∆x

2
∂2 f
∂x2 (ξ) . (4.28)

Remember that
Forward-difference quotient

f (x + ∆x)− f (x)
∆x

, (4.29)

is the forward-difference quotient. If D = ∂/∂x is the operator for
the derivative, while D+ is the forward-difference operator where

D+( f ) =
f (x + ∆x)− f (x)

∆x
, (4.30)

then Eq. (4.28) can be written on operator form as

D( f ) = D+( f ) + R+ , (4.31)

where R+ is the remainder. We see that the remainder R+(x) is the
truncation error in the Taylor series,

R+(x) = −∆x
2

∂2 f
∂x2 (ξ) . (4.32)

As we are numerically solving partial differential equations by
finite difference methods, we will call the remainder R+(x) for a
value x the local discretisation error at x. Local discretisation error

From Eq. (4.32) we see that R+(x) is of first order in ∆x. Follow-
ing the description of the big-oh O in the mathematical notes in
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Sec. 17.5, we then have that R+(x) = O(∆x), meaning that R+(x)
goes to zero at least as fast as ∆x. Replacing the remainder R+(x)
by O(∆x), we see that Eq. (4.28) can be written as

∂ f (x)
∂x

=
f (x + ∆x)− f (x)

∆x
+O(∆x) , (4.33)

indicating that the error is of order one in ∆x. We say that the
forward difference quotient is a first-order approximation of the
derivative ∂ f (x)/∂x, since the error is of order one.

We will now turn from the forward to the backward approxima-
tion. Similarly to the procedure for the forward difference quotient,
we can obtain the following Taylor series

f (x − ∆x) = f (x)− ∆x
1!

∂ f (x)
∂x

+
∆x2

2!
∂2 f
∂x2 (ξ) , (4.34)

where ξ now is a number between x − ∆x and x.
Rearranging Eq. (4.34), we can then approximate the derivative

∂ f /∂x by the backward-difference quotient as

∂ f (x)
∂x

=
f (x)− f (x − ∆x)

∆x
+

∆x
2

∂2 f
∂x2 (ξ)

=
f (x)− f (x − ∆x)

∆x
+O(∆x)

≃ f (x)− f (x − ∆x)
∆x

. (4.35)

The backward-difference quotient was given as Backward-difference quotient

D−( f ) =
f (x)− f (x − ∆x)

∆x
. (4.36)

In operator form, we then have

D( f ) = D−( f ) + R− , (4.37)

where R− = O(∆x), thus the backward difference quotient is also a
first-order approximation of the derivative.

We have now approximated the derivative by either going for-
ward or backward. However, any set of points encapsulating x
could be used to approximate the derivative. The last difference
quotient we will present is evaluating the function both forward
and backward from x. For this end, consider the two Taylor series

f (x + ∆x) = f (x) +
∆x
1!

∂ f (x)
∂x

+
∆x2

2!
∂2 f (x)

∂x2 +
∆x3

3!
∂3 f
∂x3 (ξ f )

f (x − ∆x) = f (x)− ∆x
1!

∂ f (x)
∂x

+
∆x2

2!
∂2 f (x)

∂x2 − ∆x3

3!
∂3 f
∂x3 (ξb) ,

(4.38)

where ξ f is a number between x and x + ∆x, and ξb is a number
between x − ∆x and x (the subscripts indicate f for forward and b
for backward). If we subtract the two Taylor series above, we obtain

f (x + ∆x)− f (x − ∆x) = 2∆x
∂ f (x)

∂x
+

∆x3

3!
∂3 f
∂x3 (ξ f ) +

∆x3

3!
∂3 f
∂x3 (ξb) .

(4.39)
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This yields

∂ f (x)
∂x

=
f (x + ∆x)− f (x − ∆x)

2∆x
− ∆x2

12

(
∂3 f
∂x3 (ξ f ) +

∂3 f
∂x3 (ξb)

)
=

f (x + ∆x)− f (x − ∆x)
2∆x

−O(∆x2)

≃ f (x + ∆x)− f (x − ∆x)
2∆x

, (4.40)

where

D0( f ) =
f (x + ∆x)− f (x − ∆x)

2∆x
(4.41)

is called the centered difference quotient. We see that D0 = 1/2(D+ + Centered difference quotient

D−). We further observe that the remainder for the centered differ-
ent quotient is of order two, thus the centered difference quotient
is a second-order approximation of the derivative. Thus the cen-
tered difference quotient is a higher order approximation than the
forward and backward difference quotients. This could indicate
that the centered difference is the preferred approximation for the
derivative, however, this is not always so – we will see that the pre-
ferred approximation depends on the overall problem.

4.2.3 Second-difference quotient

We now want to obtain a difference quotient approximation for the
second derivative; a second-difference quotient. For this end, consider
the forward and backward Taylor series centered around x:

f (x + ∆x) = f (x) +
∆x
1!

∂ f (x)
∂x

+
∆x2

2!
∂2 f (x)

∂x2 +
∆x3

3!
∂3 f (x)

∂x3 +
∆x4

4!
∂4 f
∂x4 (ξ f )

f (x − ∆x) = f (x)− ∆x
1!

∂ f (x)
∂x

+
∆x2

2!
∂2 f (x)

∂x2 − ∆x3

3!
∂3 f (x)

∂x3 +
∆x4

4!
∂4 f
∂x4 (ξb) .

(4.42)

Note that these are the same Taylor series as we used to derive
the centered difference quotient (Eq. (4.38)), but to an order four
instead of three. If we add the two Taylor series in Eq. (4.42), we
obtain

f (x+∆x)+ f (x−∆x) = 2 f (x)+∆x2 ∂2 f (x)
∂x2 +

∆x4

4!

(
∂4 f
∂x4 (ξ f ) +

∂4 f
∂x4 (ξb)

)
.

(4.43)
Solving for the second derivative, we then get

∂2 f (x)
∂2x

=
f (x + ∆x)− 2 f (x) + f (x − ∆x)

∆x2 − ∆x2

4!

(
∂4 f
∂x4 (ξ f ) +

∂4 f
∂x4 (ξb)

)
=

f (x + ∆x)− 2 f (x) + f (x − ∆x)
∆x2 −O(∆x2)

≃ f (x + ∆x)− 2 f (x) + f (x − ∆x)
∆x2 , (4.44)

where
Centered second-difference quotientD2

0( f ) =
f (x + ∆x)− 2 f (x) + f (x − ∆x)

∆x2 , (4.45)
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is called the centered second-difference quotient. Observe that the re-
mainder for the centered second-difference quotient approximation
is of order 2 in ∆x.

As for the first-difference quotients, there exist several second-
difference quotients. However, in this book the centered second-
difference quotient is the only one in use, so we will not consider
the others.

4.3 Truncation error

As seen from, e.g., the forward-difference operator, Eq. (4.31), when
we replace the original operator D by the difference operator D+,
we get a remainder R+ representing the error. Thus the differen-
tial equation and the corresponding finite difference equation will
differ by this remainder. We see that this error is the truncation
term from Taylor’s theorem, Eq. (4.23). Thus, the differential equa-
tion and the corresponding finite difference equation differ by the
truncation in the Taylor series. The order of approximation for the
different difference quotients introduced in the previous section are
given in Tab. 4.1.

Difference Order of
quotient approximation

D+ 1
D− 1
D0 2
D2

0 2

Table 4.1: The order of ap-
proximation for the different
difference quotients presented
in the previous section.

Let us consider the 1D diffusivity equation as given by Eq. (3.54).
To simplify notation, we let η = 1:

∂2 p
∂x2 =

∂p
∂t

. (4.46)

If we us the centered second-difference quotient D2
0, Eq. (4.44), for

the second derivative, and the first-difference forward-difference
quotient D+, Eq. (4.28), for the time derivative, we obtain the equa-
tion

p(x + ∆x, t)− 2p(x, t) + p(x − ∆x, t)
∆x2 − ∆x2

4!

(
∂4 p
∂x4 (ξ f )−

∂4 p
∂x4 (ξb)

)
=

p(x, t + ∆t)− p(x, t)
∆t

− ∆t
2

∂2 p
∂t2 (ξt) . (4.47)

We thus see that if we replace the partial differential equation by
the difference quotients as

p(x + ∆x, t)− 2p(x, t) + p(x − ∆x, t)
∆x2 =

p(x, t + ∆t)− p(x, t)
∆t

,
(4.48)

we introduce a local discretization error at the point (x, t) of

∆x2

4!

(
∂4 p
∂x4 (ξ f )−

∂4 p
∂x4 (ξb)

)
− ∆t

2
∂2 p
∂t2 (ξt) = O(∆x2) +O(∆t) .

(4.49)
This error is a local error for the given point (x, t). For a grid and
a set of time steps, we will get a global error being the sum of all
such local errors (note that they might cancel out). For a general
case it is impractical to calculate all the local errors and sum them
up to find the global error.
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As the local error is of order O(∆x2) + O(∆t), also the global
error will correlate with O(∆x2) + O(∆t). Thus, if the grid block
sizes and the time steps both go to zero, the error should diminish
too. In practice one would investigate the discretization error by
conducting grid and time refinements; i.e., one would solve the
system for several different grid sizes and time step sizes, and
investigate when the solutions converge.

Note that when one is conducting such grid and time refine-
ments, the convergence might not correspond to O(∆x2) +O(∆t).
This is because the step size, e.g., the grid block size ∆x, is so large
that we might be outside the asymptotic behavior described by the
truncation of the Taylor series (such as the case with the function
log(x + 1) when x = 0 and ∆x > 1).

4.3.1 Example comparing the difference quotients

Consider the function f (x) = x3, and assume we want to investi-
gate derivatives of this function at value x = 1. For this example we
do know the solution, since we know how to take the derivative of
this function. We thus have an exact value to compare with, namely
f ′(1) = 3.

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

1

2

3

4 Function f (x)

Derivative
Forward
Backward
Centered

Figure 4.6: Plot of the function
f (x) = x3, together with the
tangent line at x = 0 shown
with a dashed line. The three
different quotients use a step
length of ∆x = 0.5.

We can calculate the forward, backward and centered different
quotients for different values of ∆x as described in the previous
section. For x = 1 and ∆x = 0.5 we have illustrated these different
quotients in Fig. 4.6. This figure also contains the tangent line at
x = 1, which we know has a slope of f ′(1) = 3. We can then com-
pare the three different quotients to the exact value by comparing
the three slopes to the slope of the tangent line. From the slopes it
is obvious that the centered quotient is closer to the exact derivative
given by the dashed line than the forward and backward quotients.
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This is as expected, as the centered difference quotient has an er-
ror of order O(∆x2), while the forward and backward difference
quotients have errors of order O(∆x).

∆x Forward Backward Centered
0.5 4.75 1.75 3.25
0.1 3.31 2.71 3.01
0.05 3.1525 2.8525 3.0025
0.01 3.0301 2.9701 3.0001
0.005 3.015025 2.985025 3.000025
0.001 3.003001 2.997001 3.000001

Table 4.2: Approximation to
f (x) = x3 at x = 1.0 for differ-
ent methods and different step
lengths ∆x.

The derivative approximations for a set of different ∆x values
are shown in Tab. 4.2. The convergence of these three different
quotients are plotted in Fig. 4.7. It is clear from both the table and
the plot that the centered difference quotient converges much faster
to the analytical value of 3.0.

Let us also consider the error, given as the absolute value of the
difference between the analytical value and the difference quotient
value E(∆x) = ∥D( f )−D( f )∥ = ∥R∥ (note the difference between
the capital D representing the finite difference and the curly D
representing the derivative). From the derivations above we see
that the error E(∆x) ∝ ∆x for the forward and backward methods,
while the error is E(∆x) ∝ (∆x)2 for the centered method. Taking
the logarithm on both sides of the proportionality symbol, we see
that log(E) ∝ log(∆x) for the forward and backward methods. This
should give a slope of 1 when plotting the error versus ∆x on a log-
log-plot. We also see that log(E) ∝ log

(
∆x2) = 2 log(∆x) for the

centered difference, which will give a slope of 2 when plotting the
error versus ∆x on a log-log-plot. In the right figure in Fig. 4.7 we
can clearly see that the forward and backward methods has a slope
of 1, while the centered difference has a slope of 2, as expected.
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Figure 4.7: Plots showing how
the different types of difference
quotients converge towards
the exact solution. The left
plot shows the absolute values,
while the right plot is a loga-
rithmic plot of the error values.
The color coding for the lines
is the same as in Fig. 4.6, with
blue for forward, green for
backward, and red for centered
difference quotient.Note that the error for the forward- and backward-difference

quotient curves in Fig. 4.7 are slightly different, however they seem
to converge for small values of ∆x. The difference is due to the
difference in truncation error R+ ̸= R−. As ξ f ∈ [x, x + ∆x] and
ξb ∈ [x − ∆x, x], we have ∥ξ f − ξb∥ < 2∆x. So when ∆x → 0, then
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∥ξ f − ξb∥ < 2∆x → 0, and further ∥∂ f /∂x(ξ f )− ∂ f /∂x(ξb)∥ → 0
for a smooth function f . Since

∥R+−R−∥ =

∥∥∥∥∆x
2

(
∂ f
∂x

(ξ f )−
∂ f
∂x

(ξb)

)∥∥∥∥ =
∆x
2

∥∥∥∥∂ f
∂x

(ξ f )−
∂ f
∂x

(ξb)

∥∥∥∥ ,

(4.50)
we see that the difference between the forward and backward error
converge to zero faster than the errors themselves (of order O(∆x))
converge to zero. Thus the errors as a function of ∆x converge for
the forward- and backward-difference quotients. This is clearly
observed in Fig. 4.7.

4.4 Discretization

In numerical methods we use finite differences to approximate our
functions at discrete points in the solution space. The diffusivity
equation has both a spatial and a time dimension, and the solution
space for the one-dimensional diffusivity equation is indicated in
Fig. 3.7. To pave the ground for a numerical solution, which we
will return to in the next chapter, we need to discretize the (x, t)-
space to obtain our finite differences. The simplest discretization
is to divide the space into grid points with a constant separation
in each direction, i.e., use constant step sizes ∆t and ∆x. Such a
discretization is indicated in Fig. 4.8.

t

x

0 l

Figure 4.8: This figure indi-
cates a possible set of discrete
points in the (x, t) space than
can be used for the numerical
approximation of the par-
tial differential equation, e.g.
Eq. (3.54).

The discretization of the spatial coordinates needs to conform
to the underlying geometry and properties of the structure we are
working with. We will return to this spatial discretization below.
For the time discretization we have more freedom, as we only need
to conform to discretizing the space [t0, ∞]. The simplest discretiza-
tion is to keep constant time steps of size ∆t. It is however normal
to adapt time step sizes to ensure convergence.

For our 1-dimensional case the spatial x-coordinate must be
subdivided into a number of discrete distances. Then, the pres-
sure in each block can be solved for numerically for each time step.
For our simple one dimensional slab visualized in Fig. 3.6 we as-
sumed constant properties for the material (which gives a constant
hydraulic diffusivity constant η). For such a case we can divide
the x-direction into n grid blocks of equal size ∆x, as indicated in
Fig. 4.9.

1 2 3 i − 1 i i + 1 n − 2 n − 1 n

Figure 4.9: Figure indicating
the grid cells for the pseudo-
1D slab.

The grid blocks are assigned indices, i, referring to an effec-
tive point of each block representing the average properties of this
block: The effective geological properties of the grid cell includes
porosity and permeability, while state variables include pressure
(and later also saturation). Grid boundaries are associated with
properties such as flow rates.
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If our properties, and thereby η, is varying, our discretization
would need to capture this property variation, which could pre-
clude having a constant grid block size. We will return to different
types of grids in Chap. 7, however, we will introduce two main
types of grid systems used for finite-difference schemes already
here. Following Settari and Aziz (1972) these grid types will be
referred to as block-centered and point-distributed.

i − 1/2

i − 1 i

i + 1/2

i + 1

Figure 4.10: Figure indicating
the grid cell boundaries and
centers for a block-centered
grid with varying grid sizes.

In a block-centered grid, the location of the grid boundaries {xi+1/2} Block-centered grid

are defined while the grid cell centers are calculated. The grid cell
centers are calculated as

xi =
xi−1/2 + xi+1/2

2
. (4.51)

For block-centered grids, the grid cell centers are all midway in the
grid cell, thereby the name. An example of a block-centered grid is
shown in Fig. 4.10.

i − 1/2

i − 1 i

i + 1/2

i + 1

Figure 4.11: Figure indicating
the grid cell boundaries and
centers for a point-distributed
grid with varying length be-
tween the cell centers.

In a point-distributed grid the location of all the grid centers are Point-distributed grid

defined. The grid boundaries are calculated as

xi+1/2 =
xi + xi+1

2
. (4.52)

For point-distributed grids the grid cell centers are not necessar-
ily in the middle of the grid cells, as indicated in Fig. 4.11. Note
that for a grid with equal size cells, the block-centered and point-
distributed grids are equal, e.g., the grid depicted in Fig. 4.9.

The block-centered grids are more easily adapted to the distri-
bution of reservoir properties, e.g., rock properties such as porosity
and permeability from a geo-model, as we can start by assigning
the cell boundaries at the boundaries between different rock proper-
ties. It might also look more natural to have the grid cell properties
evaluated at the center of the grid cell. As it is more complicated to
represent irregular grids with the point-distributed grid model, you
might need a higher number of grid-cells to be able to represent the
same underlying geometry. Thus the point-distributed model is less
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adaptable to represent a given geo-model. However, it turns out
that the point-distributed grids give a consistent finite-difference
operator for situations where the grid sizes vary. It might there- A comparison of the truncation error

for the block-centered and point-
distributed grids can be found in
Chapter 3.5 in Aziz and Settari (1979).

fore give convergence with fewer grid cells. For this reason we will
mostly consider point-distributed grids in this book, despite the
fact that they are less versatile for representing the distribution of
properties.

Let us return to the general form of the diffusivity equation,
Eq. (3.36), where we allow for heterogeneous permeability and
varying density and viscosity. Assume that the density and viscos-
ity is kept constant, while the permeability might be variable, then
we need to solve the partial derivative

∂

∂x

(
a(x)

∂

∂x
f (x)

)
, (4.53)

where a(x) = k(x) gives the permeability and f (x) = p(x) gives
the pressure. We can also generalize the grid, allowing for the ∆x
to be different at the two sides, say ∆xl ̸= ∆xr (as is the case for the
point-distributed grid). Such a situation is illustrated in Fig. 4.12.

∆xl ∆xr

x − ∆xl
2 x x + ∆xr

2

∆xl
2

∆xr
2

Figure 4.12: Figure indicating
the grid cells for a point-
distributed grid with varying
grid block sizes.

Using the centered difference quotient, as given by Eq. (4.40),
with step size ∆xl/2 and ∆xr/2, for the derivative ∂ f /∂x, we ap-
proximate the partial differentials as

a
∂ f
∂x

(
x − ∆xl

2

)
≃ a

(
x − ∆xl

2

)
f (x)− f (x − ∆xl)

∆xl

a
∂ f
∂x

(
x +

∆xr

2

)
≃ a

(
x +

∆xr

2

)
f (x + ∆xr)− f (x)

∆xr
. (4.54)

We then express the second-difference quotient as

Second-difference quotient for varying
block sizes.

∂

∂x

(
a(x)

∂

∂x
f (x)

)
≃

a ∂ f
∂x

(
x + ∆xr

2

)
− a ∂ f

∂x

(
x − ∆xl

2

)
(

x + ∆xr
2

)
−
(

x − ∆xl
2

)
≃

a
(

x + ∆xr
2

)
f (x+∆xr)− f (x)

∆xr
− a

(
x − ∆xl

2

)
f (x)− f (x−∆xl)

∆xl

∆xr+∆xl
2

. (4.55)

One can show that this approximation is of order O(∆x2), where
∆x = max(∆xl , ∆xr).
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Assuming a constant grid cell size, ∆x, we get the following
expression for the second-difference quotient Second-difference quotient for constant

block sizes, but varying properties.
∂

∂x

(
a(x)

∂

∂x
f (x)

)

≃
a
(

x + ∆x
2

)
( f (x + ∆x)− f (x))− a

(
x − ∆x

2

)
( f (x)− f (x − ∆x))

(∆x)2 .

(4.56)

4.5 Boundary conditions

In a reservoir simulation model the most important boundaries con-
sist of two types: wells and the outer boundaries of the reservoir.
We need to specify the boundary conditions for both of these. Note
that we might have additional boundaries, e.g., faults, aquifers etc.,
which might have more complex boundary conditions.

Basically, we have two types of boundary conditions; Dirichlet
boundary conditions specify the value of the function at the bound-
ary of our domain, while Neumann boundary conditions specify
the value of the derivative (or gradient) at the boundary. As we
are trying to solve for the pressure, a Dirichlet boundary condition
then means to specify the pressure at the boundary, while a Neu-
mann boundary condition would then be to specify the flow rate
at the boundary (as the Darcy equation equates the pressure gradi-
ent with flow rate). Additionally, we could have a mix of these two
boundary conditions (Robin boundary condition).

4.5.1 Pressure boundary conditions

Let Γ be the boundary of our porous medium (reservoir) Ω. With
pressure boundary conditions, which are Dirichlet boundary con-
ditions, pressure is specified at the boundaries, thus p(x⃗) must be
specified for all x⃗ ∈ Γ.

Our 1-dimensional system considered in the previous chapter
had Dirichlet boundary conditions given by a constant pressure at
each end of the system, namely p(0, t) = pl and p(l, t) = pr.

pl = p1/2

p1 p2 pn−1 pn
pn+1/2 = pr

Figure 4.13: Figure indicat-
ing the pressure points at the
boundaries of the pseudo-1D
slab.

For the discretized 1-D slab considered before, we define the
index of the left side as 1/2, and the index of the right side as n +

1/2, as indicated in Fig. 4.13. The reason for the indices 1/2 and
n + 1/2 is that the boundary conditions are applied to the ends
of the first and the last blocks, respectively, not internally in the
block. Thus, the boundary conditions cannot directly be substituted
into the difference equation. However, we can use Taylor series to
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derive equations for the end blocks. For the first block we obtain a
forward difference as

p2 = p(x2) = p(x1 + ∆x)

= p(x1) +
∆x
1!

∂p
∂x

(x1) +
(∆x)2

2!
∂2 p
∂x2 (x1) +

∆x3

3!
∂3 p
∂x3 (ξ2) . (4.57)

Using the distance ∆x/2 we get a backward difference as

pl = p(x1/2) = p
(

x1 −
∆x
2

)
= p(x1) +

(−∆x
2 )

1!
∂p
∂x

(x1) +
(−∆x

2 )2

2!
∂2 p
∂x2 (x1) +

(−∆x
2 )3

3!
∂3 p
∂x3 (ξ1/2) .

(4.58)

By adding two times Eq. (4.58) to Eq. (4.57), we obtain a second-
difference quotient as: Second-difference quotient for the left

Dirichlet boundary condition

∂2 p
∂x2 (x1) =

p2 − 3p1 + 2pl
3
4 (∆x)2

+O(∆x) . (4.59)

A disadvantage of this formulation is that the residual term is only
of first order, i.e. proportional to ∆x.

Similarly, the following expression can be obtained for the right
hand side boundary condition: Second-difference quotient for the

right Dirichlet boundary condition

∂2 p
∂x2 (xn) =

2pr − 3pn + pn−1
3
4 (∆x)2

+O(∆x) . (4.60)

4.5.2 Flow rate boundary condition

Flow rate boundary conditions, which are Neumann boundary
conditions, is to specify the flux over the boundary Γ of the porous
medium. Thus q⃗(x⃗) · n⃗ = g(x⃗) for a function g defined for all
points x⃗ ∈ Γ. In practice, we specify the flow rate q into or out of
an end face of the grid system. For a grid where the x-direction is
perpendicular to the boundary, one can define a Neumann bound-
ary condition as ∂p/∂x(x) = g(x). A no-flow boundary condition
amount to setting the flow rate to zero at the boundary. The no-
flow boundary condition is common at outer boundaries of the
reservoir, between non-communicating layers, and across sealing
faults in the reservoir.

For our one-dimensional system considered before, this would
amount to specify the flux q(0, t) = ql and q(l, t) = qr at the two
ends. From Darcy’s law we can express the Darcy velocity as:

ql = − k
µ

∂p
∂x

(x1/2) , (4.61)

where we use the simplified notation x1/2 = x1 − ∆x/2.
As we did for the pressure boundary condition, we will again

apply a Taylor series expansion around x1, but this time we will let
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the derivative of the pressure be the function:

∂p
∂x

(
x1 +

∆x
2

)
=

∂p
∂x

(x1) +
(∆x

2 )

1!
∂2 p
∂x2 (x1) +

(∆x
2 )2

2!
∂3 p
∂x3 (ξ2)

∂p
∂x

(x1/2) =
∂p
∂x

(
x1 −

∆x
2

)
=

∂p
∂x

(x1) +
(−∆x

2 )

1!
∂2 p
∂x2 (x1) +

(−∆x
2 )2

2!
∂3 p
∂x3 (ξl)

(4.62)

Subtracting the second expression from the first, then solving for
the second derivative, we obtain the following approximation:

∂2 p
∂x2 (x1) =

∂p
∂x (x1 +

∆x
2 )− ∂p

∂x (x1/2)

∆x
+O(∆x) (4.63)

We now want to replace the pressure derivatives. For the first pres-
sure derivative we apply a central difference quotient:

∂p
∂x

(
x1 +

∆x
2

)
=

p(x2)− p(x1)

∆x
+O(∆x2) . (4.64)

The second pressure derivative can be replaced using Eq. (4.61),
yielding the following expression for the left Neumann boundary
condition: Second-difference quotient for the left

Neumann boundary condition
∂2 p
∂x2 (x1) =

p2 − p1

(∆x)2 + ql
µ

∆xk
+O(∆x) . (4.65)

Similarly, a constant rate at the right hand side, qr , would yield
the following expression: Second-difference quotient for the

right Neumann boundary condition

∂2 p
∂x2 (xn) =

pn − pn−1

(∆x)2 + qr
µ

∆xk
+O(∆x) . (4.66)

As for the Dirichlet boundary condition, also the Neumann
boundary boundary condition gives a local discretisation error of
order one, in contrast to the centered second-difference quotient of
order two.

4.5.3 Mixed boundary condition

For reservoir models it is common to have both types of bound-
ary conditions; Dirichlet and Neumann. At the outer boundaries
of the reservoir it is common with a no-flow boundary condition
(a Neumann boundary condition), while the wells can be either
pressure controlled (a Dirichlet boundary condition), which is nor-
mal for producers, or the wells can be rate controlled (a Neumann
boundary condition), which is normal for injectors.

It is also possible to have a mix of the two boundary conditions,
in mathematics called Robin boundary conditions;

(a∇p · n⃗ + bp) (x⃗) = g(x⃗) , (4.67)

where x⃗ ∈ Γ is on the boundary. Such mixed boundary conditions
do occur in reservoir simulation models, e.g., at leaking faults.
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4.6 Exercises

Exercise 4.1 Consider the function f (x) = x2 at point x = 2.

a) Calculate the forward, backward and centered difference quo-
tient for f (x) at x = 2.0 for different step lengths ∆x. Plot how
the difference quotients converge towards the analytical solution.

b) Calculate the centered second-difference quotient for f (x) at
x = 2.0 for different step lengths ∆x.

Exercise 4.2 Consider the function f (x) = sin(x) at point x = 1.0.

a) Calculate the forward, backward and centered difference quo-
tient for f (x) at x = 1.0 for different step lengths ∆x.

b) Plot the error E = ∥D( f )(x)− f ′(x)∥ for the different difference
quotients for x = 1.0, e.g. E+ = ∥D+(sin(x))(1.0) − cos(1.0)∥
for the forward difference. Try to fit the error with a polynomial.
What order is the fitted polynomial for the different methods?

c) Repeat the tasks above for the difference quotient given by

D3( f ) =
1

6∆x
[2 f (x + ∆x) + 3 f (x)− 6 f (x − ∆x) + f (x − 2∆x)] .

What order of accuracy does the difference quotient D3 give?





5
Numerical methods for single-phase flow

Do not worry about your difficulties in
mathematics, I can assure you mine are
still greater

Albert Einstein

In this chapter we will return to the 1-dimensional single phase
case considered in Chap. 3. The diffusivity equation, Eq. (3.52),
which was solved analytically in Chap. 3, will be solved numeri-
cally in this chapter. We will use finite difference approximations
for the two derivative terms ∂2 p/∂x2 and ∂p/∂t, as presented in the
previous chapter.

5.1 Finite difference approximations

In this section we will conduct a finite difference approximations by
using the difference quotients introduced in the previous chapter to
the second order spacial derivative ∂2 p/∂x2 and the first order time
derivative ∂p/∂t.

In the previous chapters we used lower case letters for the pres- Lower case denote the actual solution,
while upper case denote the numerical
approximation.

sure field, p. In the following we will use upper case letter P to
denote the pressure variables at the different points in a numerical
solution. Thus lower case p is the actual solution, while upper case
P is the numerical approximation. Further, we will use an index
system where we indicate the spatial grid index by a subscript, and Index system

the time level by a superscript. Thus Pt
i is the numerical pressure

in the spatial point represented by the grid cell with index i and at
time level t. Thus, if we have constant grid size and time steps, then
Pt

i = P(i∆x, t∆t) when ∆x is the spatial grid size and ∆t is a con- For a three-dimensional system we
have Pt

i,j,k = P(i∆x, j∆y, k∆z, t∆t),
where ∆x, ∆y and ∆z are constant grid
cell sizes in the three spatial directions.

stant time step. Note that we do not necessarily have constant grid
cell size and constant time steps, we will still index cells and time
steps by indices. Note that we are a bit sloppy with the time step
notation, sometimes t represents the time step index, while other
times it represents the actual time. In the latter case, Pt

i = P(i∆x, t).
Consider the 1D diffusivity equation as given by Eq. (3.54):

η
∂2 p
∂x2 =

∂p
∂t

. (5.1)
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We will now consider different difference quotients for the deriva-
tives in this equation.

Using the centered second-difference quotient, Eq. (4.44), for the
second derivative, we have

∂2 p
∂x2 (x, t) ≃ p(x + ∆x, t)− 2p(x, t) + p(x − ∆x, t)

∆x2 , (5.2)

where the truncation error is proportional to (∆x)2, thus of order
O((∆x)2). For the numerical solution, employing the index system
where subscript is grid index number and superscript is time level,
we get: (

∂2P
∂x2

)t

i
=

Pt
i+1 − 2Pt

i + Pt
i−1

∆x2 (5.3)
Second-difference quotient in space

Any time level could be used in the equation above; at time
levels t + ∆t and t + ∆t

2 we get the following:(
∂2P
∂x2

)t+∆t

i
=

Pt+∆t
i+1 − 2Pt+∆t

i + Pt+∆t
i−1

∆x2 (5.4)

(
∂2P
∂x2

)t+ ∆t
2

i
=

Pt+ ∆t
2

i+1 − 2Pt+ ∆t
2

i + Pt+ ∆t
2

i−1
∆x2 (5.5)

These shifted time levels will be used for different solution tech-
niques and to represent the boundary conditions.

At a constant position, x, we can use the forward difference
quotient Eq. (4.29) for the time to get the approximation:

∂p
∂t

(x, t) ≃ p(x, t + ∆t)− p(x, t)
∆t

, (5.6)

where the error term is proportional to ∆t, i.e., of order O(∆t).
Employing the index system, we get:

Forward difference quotient in time(
∂P
∂t

)t

i
=

Pt+∆t
i − Pt

i
∆t

. (5.7)

Similarly, expanding backward in time as given by Eq. (4.36), we
get: (

∂P
∂t

)t

i
=

Pt
i − Pt−∆t

i
∆t

. (5.8)

Shifting the time step, when then have:
Backward difference quotient in time(

∂P
∂t

)t+∆t

i
=

Pt+∆t
i − Pt

i
∆t

. (5.9)

Observe that the right hand side of the backward difference quo-
tient shifted in time as given by Eq. (5.9) is identical to the right
hand side of the forward difference quotient given by Eq. (5.7).

Finally, we can also consider the centered difference quotient
given by Eq. (4.40), where the step side is ∆t/2:

∂p
∂t

(x, t) ≃ p(x, t + ∆t
2 )− p(x, t − ∆t

2 )

∆t
. (5.10)
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Shifting the time step by ∆t/2, we obtain:

∂p
∂t

(x, t +
∆t
2
) ≃ p(x, t + ∆t)− p(x, t)

∆t
. (5.11)

With the index system we then get:
Centered difference quotient in time(

∂P
∂t

)t+ ∆t
2

i
=

Pt+∆t
i − Pt

i
∆t

(5.12)

Again, we see that the right hand side is equal to Eq. (5.7) and
Eq. (5.9). Thus all the three different difference quotients, forward,
backward and centered, yields the same right hand side after an
appropriate shift to the time level where the derivative is evaluated.

All of these derived equations will be used in the following.

5.2 Numerical solutions

In this section we will derive a discretized reformulation of the
diffusivity equation, together with appropriate boundary conditions
and initial conditions.

The 1D diffusivity equation, as given by Eq. (3.54);

η
∂2 p
∂x2 =

∂p
∂t

, (5.13)

can be reformulated into our numerical index system as

η

(
∂2P
∂x2

)t

i
=

(
∂P
∂t

)t

i
. (5.14)

With Dirichlet (pressure) boundary conditions, using our index
system, we have

Pt
i=1/2 = pl

Pt
i=n+1/2 = pr , (5.15)

for all time steps t. The reason we here use indices i = 1/2 and
n + 1/2 is that the boundary conditions are applied to the ends of
the first and the last grid blocks, respectively. Transferring the left
side Dirichlet boundary condition, Eq. (4.59), to our index system,
we obtain (

∂2P
∂x2

)t

1
=

Pt
2 − 3Pt

1 + 2pl
3
4 (∆x)2

. (5.16)

Similarly, we transfer the right side Dirichlet boundary condition,
Eq. (4.60), to our index system as:(

∂2P
∂x2

)t

n
=

2pr − 3Pt
n + Pt

n−1
3
4 (∆x)2

. (5.17)

We can obtain similar equations for Neumann boundary condi-
tions.
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If the system is initialized with a pressure equal the right side
boundary condition pressure, then initial condition (initial pres-
sures) for our 1D system may be specified as:

P0
i = pr , (5.18)

for all grid indices i. For non-horizontal systems, the system is
usually initialized by calculating the hydro-static pressures from a
reference pressure at a given depth and fluid densities.

Having derived numerical representations for the differential
equations, and having initial and boundary conditions, we can
solve for the pressures. In the equations above we used the time t
for the difference quotients. By substitution, we can as well assign a
time level of t + ∆t or t + ∆t

2 with equal generality. In the following
we will see that using different time levels will lead to different
numerical formulations. We will start with using the time level t,
which is giving an explicit formulation.

5.2.1 Explicit formulation

In this subsection we will obtain a set of difference equation that
can be solved explicitly for the pressures. For this end, consider
Eq. (5.14):

η

(
∂2P
∂x2

)t

i
=

(
∂P
∂t

)t

i
. (5.19)

For the second order spatial derivative on the left side we will use
the centered second-difference quotient as given by Eq. (4.44), for-
mulated with our numerical index system as Eq. (5.3). The for-
ward difference quotient given by Eq. (4.29) for the time derivative
is given in our numerical index system by Eq. (5.7). Combining
Eq. (5.3) and Eq. (5.7) we get

η
Pt

i+1 − 2Pt
i + Pt

i−1
∆x2 =

Pt+∆t
i − Pt

i
∆t

. (5.20)

Note that the errors involved in this numerical form of the diffusiv-
ity equation are of order O(∆t) and O(∆x2). Also note that there
is only one pressure at time t + ∆t, namely Pt+∆t

i . Solving for this
pressure Pt+∆t

i , we get an explicit formulation for the pressure as:

Pt+∆t
i = Pt

i +

(
∆t

∆x2

)
η
(

Pt
i+1 − 2Pt

i + Pt
i−1
)

. (5.21)

This equation holds for all the internal grid cells.

i − 1, t i, t i + 1, t

i, t + ∆t

Figure 5.1: The stencil for
the explicit method as given
by Eq. (5.20), indicating the
input and output data for a
single time step. As seen from
Eq. (5.21), you need the pres-
sures at points i − 1, i and i + 1
at time-step t to calculate the
pressure of point i at time-step
t + ∆t.

With the boundary conditions given by Eq. (5.16) and Eq. (5.17),
we then have the following system of equations:

Pt+∆t
1 = Pt

1 +
4
3

(
∆t

∆x2

)
η(Pt

2 − 3Pt
1 + 2pl)

Pt+∆t
i = Pt

i +

(
∆t

∆x2

)
η(Pt

i+1 − 2Pt
i + Pt

i−1) ∀i ∈ {2, . . . , n − 1}

Pt+∆t
n = Pt

n +
4
3

(
∆t

∆x2

)
η(2pr − 3Pt

n + Pt
n−1) . (5.22)
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To simplify we can define α = η∆t/∆x2. We see that given the pres-
sures at a given time step, then Eqs. (5.22) gives us the pressures at
the next time step. Starting with the pressures given by the initial
condition, we can then calculate pressures at all subsequent time
steps using Eqs. (5.22) iteratively.

A single time step can be implemented in Python as:

def explicitTimeStep(afPressure,fAlpha,fLeftPressure,

↪→ fRightPressure):

afPressureNextTimestep=afPressure[:]

afPressureNextTimestep[0]=afPressure[0]+(4.0/3.0)*fAlpha*(

↪→ afPressure[1]-3.0*afPressure[0]+2.0*fLeftPressure)

afPressureNextTimestep[-1]=afPressure[-1]+(4.0/3.0)*fAlpha*(2.0*
↪→ fRightPressure-3.0*afPressure[-1]+afPressure[-2])

afPressureNextTimestep[1:-1]=afPressure[1:-1]+fAlpha*(afPressure

↪→ [2:]-2.0*afPressure[1:-1]+afPressure[:-2])

return afPressureNextTimestep

Here afPressure is the vector (array) of pressures P⃗ = [P1, P2, . . . , Pn]T . The T indicates that we take the
transpose of the vector, i.e.,

[P1, P2, . . . , Pn]
T =


P1
P2
...

Pn

 .

The precursor af indicates that this is an array of floats (decimal-
numbers). Similarly falpha is the float value α. Finally, fLeftPressure
and fRightPressure are the float values of the boundary conditions
pl and pr, respectively.

We use the same constants as before:

# Initialization of parameters

iNumberCells=100 # number of grid cells

fDeltat=1.0E-5 # time step size [seconds]

fEta=1.0 # hydraulic diffusivity [meter squared per second]

fModelLength=1.0 # meters

fInitialPressure=1.0 # pascal

fLeftPressure=2.0 # pascal

fRightPressure=1.0 # pascal

fDeltax=fModelLength/iNumberCells

fAlpha=fEta*fDeltat/fDeltax**2

afPressure=np.zeros(iNumberCells)

afPressure[:]=fInitialPressure

The last lines shows that to initialize the model, we define the pres-
sure field (at time step zero) to be equal the right side pressure.

We now iterate over 30000 time steps, all of length ∆t = 1.0 ×
10−5 s as given by the float variable fDeltat above:

#Time loop

fTime=0.0

iNumberLoops=30000

fMaxtime=fDeltat*iNumberLoops

while(fTime<fMaxtime):

# Increase the time by one time-step

fTime+=fDeltat

# Calculate the pressures at the next time step from

# the current pressures

afPressure=explicitTimeStep(afPressure,fAlpha,fLeftPressure,

↪→ fRightPressure)

Plotting the pressure at each thousandth time-step gives the
plot shown in Fig. 5.2. We see again that the pressure converges
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Figure 5.2: Solution to the ex-
plicit calculation of pressure p.
We have plotted one line for
each 1000th time-step.

to the steady-state solution, given by the straight line between the
pressures at the end of the 1D system.
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Figure 5.3: Solution to the ex-
plicit calculation of pressure
P compared to the analytical
solution p. The left plot shows
the explicit solution when us-
ing 5 grid cells, while the right
plot use 10 grid cells.

To test how the solution behaves at larger gird block sizes,
we calculated the pressure using significantly fewer grid blocks,
namely 5 and 10. The results are shown in Fig. 5.3, where the
points represents the grid cell values, while the lines represent
the analytical solution. We observe that at 5 grid cells we have sig-
nificant discrepancies for the early time step between the numerical
and analytical solution we derived in Chap. 3. Already at 10 grid
cells the solution seems to be fair for all plotted time steps. Note
that the first pressure point is at length ∆x/2. Remember that the
solution is also dependent on the time step length ∆t. As we are
using relatively small time steps in this solution, the error is likely
caused by the spatial grid being too coarse.
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5.2.2 Implicit formulation

The implicit formulation differs from the explicit formulation in
that the time level of the pressure approximation is at time t + ∆t,
with the time derivative approximation a backward-difference
quotient. Consider Eq. (5.14) evaluated at time t + ∆t:

η

(
∂2P
∂x2

)t+∆t

i
=

(
∂P
∂t

)t+∆t

i
. (5.23)

We use the centered second-difference quotient given by Eq. (4.44)
for the spacial derivative, now evaluated at time t + ∆t, as given by
Eq. (5.3). For the time derivative we use the backward difference
quotient given by Eq. (4.36), now evaluated at time t + ∆t as in
Eq. (5.9). Inserting these equations into Eq. (5.23), we get

η
Pt+∆t

i+1 − 2Pt+∆t
i + Pt+∆t

i−1
∆x2 =

Pt+∆t
i − Pt

i
∆t

. (5.24)

Including our boundary conditions, we then get the following set
of equations:

η
Pt+∆t

2 − 3Pt+∆t
1 + 2pl

3
4 ∆x2

=
Pt+∆t

1 − Pt
1

∆t

η
Pt+∆t

i+1 − 2Pt+∆t
i + Pt+∆t

i−1
∆x2 =

Pt+∆t
i − Pt

i
∆t

∀i ∈ {2, . . . , n − 1}

η
2pr − 3Pt+∆t

n + Pt+∆t
n−1

3
4 ∆x2

=
Pt+∆t

n − Pt
n

∆t
. (5.25)

Using the same constant as in the explicit case, α = η∆t/∆x2, the
equations might be rearranged into the following forms:

Pt
1 = (4α + 1)Pt+∆t

1 − 4
3

αPt+∆t
2 − 8

3
αpl

Pt
i = −αPt+∆t

i+1 + (2α + 1)Pt+∆t
i − αPt+∆t

i−1 ∀i ∈ {2, . . . , n − 1}

Pt
n = (4α + 1)Pt+∆t

n − 4
3

αPt+∆t
n−1 − 8

3
αpr . (5.26)

i − 1, t + ∆t i, t + ∆t i + 1, t + ∆t

i, t

Figure 5.4: The stencil for the
implicit method, Eq. (5.24), in-
dicating the variables involved
in a single time-step.

Now we have a set of n equations with n unknowns, which must
be solved simultaneously. These equations can be written on matrix
form as follows:

P⃗t = AP⃗t+∆t − e⃗ . (5.27)

With this notation, the pressure vector is P⃗t = [Pt
1, Pt

2, . . . , Pt
n], with

the obvious shift in time for P⃗t+∆t, while the matrix A and vector e⃗
are given by

A =



4α + 1 −4α/3 0 0 · · · 0 0 0
−α 2α + 1 −α 0 · · · 0 0 0
0 −α 2α + 1 −α · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 2α + 1 −α 0
0 0 0 0 · · · −α 2α + 1 −α

0 0 0 0 · · · 0 −4α/3 4α + 1


,

(5.28)



76 reservoir simulation

and

e⃗ =



8
3 αpl

0
0
...
0
0

8
3 αpr


. (5.29)

To solve for the pressure P⃗t+∆t, we then have to invert the matrix
A to obtain

P⃗t+∆t = A−1P⃗t + A−1⃗e = A−1
(

P⃗t + e⃗
)

. (5.30)

There are many methods for inverting a matrix, including the
Gaussian elimination method. Our matrix A is what is called a
sparse matrix, meaning a matrix where most elements are zero. Sparse matrix

There is a range of fast matrix inversion methods for sparse matri-
ces, and several are implemented in Python. As it is more com- The python package

scipy.sparse.linalg contains sev-
eral sparse matrix inversion options.

plicated to set up a sparse matrix inversion, we will just consider
inversion of general matrices in this book.

Setting up the matrix A and inverting it to A−1 can be imple-
mented in Python as follows: Classical literature on reservoir simula-

tion, e.g., (Aziz and Settari, 1979) and
(Peaceman, 1977), use significant space
on solution methods for inverting ma-
trices. Today all computing languages,
including Python, have libraries for
efficient matrix inversion. As we will
just use existing packages, we will not
treat the topic of matrix inversion in
much detail.

def createImplicitMatrix(fAlpha,iNumberCells):

#Create matrix

aafMatrix=np.zeros([iNumberCells,iNumberCells])

#First row

aafMatrix[0,0]=4.0*fAlpha+1

aafMatrix[0,1]=-4.0*fAlpha/3.0

#Middle rows

for ii in np.arange(1,iNumberCells-1):

aafMatrix[ii,ii-1]=-fAlpha

aafMatrix[ii,ii]=2.0*fAlpha+1

aafMatrix[ii,ii+1]=-fAlpha

#Last row

aafMatrix[-1,-2]=-4.0*fAlpha/3.0

aafMatrix[-1,-1]=4.0*fAlpha+1

#Invert matrix

aafMatrixInv=np.linalg.inv(aafMatrix)

return aafMatrixInv

Here we use the Numpy-package numpy.linalg.inv for the inversion.
This package is not very efficient for large sparse matrices. Thus
for larger grids, such as those found in full field reservoir simula-
tions models, one would need to use a more efficient method for
inverting the matrix.

The vector e⃗ can be defined as:

def createImplicitVector(fAlpha,iNumberCells,fLeftPressure,

↪→ fRightPressure):

afVector=np.zeros([iNumberCells])

afVector[0]=8.0*fLeftPressure*fAlpha/3.0

afVector[-1]=8.0*fRightPressure*fAlpha/3.0

return afVector
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Having defined the vector e⃗ and calculated the inverted matrix
A−1, we can calculate P⃗t+∆t in Eq. (5.30) as:

def implicitTimeStep(afPressure,aafMatrixInv,afVector):

return np.dot(aafMatrixInv,afPressure+afVector)

Here the function np.dot calculates the matrix multiplication.
We use the same constants as before, and iterate over 30000 time

steps, all of length ∆t = 1.0 × 10−5 s:

#Time loop

fTime=0.0

iNumberLoops=30000

fMaxtime=fDeltat*iNumberLoops

while(fTime<fMaxtime):

fTime+=fDeltat

afPressure=implicitTimeStep(afPressure,aafMatrixInv,afVector)

iPltCount+=1

if iPltCount>iPltLim:

iPltCount=0

plt.plot(afPressure,color=cmap(1-fTime/fMaxtime))

Plotting the pressure at each thousand time step (iPltLim=1000)
gives the plot shown in Fig. 5.5. We see again that the pressure
converges to the steady-state solution.
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Figure 5.5: Solution to the im-
plicit calculation of pressure.
We have plotted one line for
each 1000 time-step.

As in the explicit case, to test the implicit solution, we calculated
the pressure using significantly fewer grid blocks, namely 5 and
10. The results are shown in Fig. 5.6, where the numerical solution
is given by the points, while the analytical solution is given by the
lines. As with the explicit case, we observe that we have significant
discrepancies for the early time step for the case with 5 grid cells,
while 10 grid cells seems to give fair solutions for all plotted time
steps.
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Figure 5.6: Implicit calculations
of pressure P compared to the
analytical solution p. The left
plot shows implicit solutions
when using 5 grid cells, while
the right plot use 10 grid cells.

Comparing Figs. 5.6 and 5.3, we observe that the explicit and
implicit formulations gives similar fits for the 5 grid cell case. The
implicit calculation involves inverting a matrix, an operation that
could have a significant computational cost. In our simple example,
this inversion is conducted only once, thus the extra computational
cost is small. If time steps are changing, this involves changing
the α in the matrix A, and thereby the matrix inversion needs to
be conducted anew. Thus varying time steps could lead to a sig-
nificant increase in computational cost for implicit versus explicit
calculations. In our example the increased computational cost of
the implicit method does not seem to have improved our results
notably over the explicit case. However, the implicit case is more
stable, as we will see in Sec. 5.3.

We also observe that the biggest discrepancies between the nu-
merical and analytical solutions are close to the inlet, where the sec-
ond derivative is at its largest (where you have the largest change
in slope of the curve). The boundary condition had an error term
of order O(∆x), compared to an error term of order O(∆x2) for the
internal cells. This could explain the large discrepancy for the first
point. The discrepancy for the second point could also be related
to the boundary condition, or it might be the result of poor approx-
imation by the different quotient for such large values and rapid
changes in the second derivative.

5.2.3 Crank-Nicholson formulation

The Crank-Nicholson formulation is another formulation for solving
the diffusivity equation. As it is less used, we will not treat this
formulation in as much detail as the explicit and implicit ones.

As seen from Eqs. (5.5) and (5.12), we also have the possibility
of writing the equation at a time level half-way between t (explicit)
and t + ∆t (implicit):

η

(
∂2P
∂x2

)t+ ∆t
2

i
=

(
∂P
∂t

)t+ ∆t
2

i
. (5.31)

By inserting Eqs. (5.5) and (5.12) into Eq. (5.31), we obtain the
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difference equation for block i as:

η
Pt+ ∆t

2
i+1 − 2Pt+ ∆t

2
i + Pt+ ∆t

2
i−1

∆x2 =
Pt+∆t

i − Pt
i

∆t
. (5.32)

Here i is assumed to be an internal grid cell, and the boundary
conditions needs to be treated similar to the explicit and implicit
formulations above.

i − 1, t + ∆t i, t + ∆t i + 1, t + ∆t

i − 1, t i, t i + 1, t

Figure 5.7: The stencil for the
Crank-Nicholson formulation,
indicating the input and out-
put data for a single time step.

Since the pressures are defined at time levels t and t + ∆t , and
not at t + ∆t

2 , we cannot solve this equation as it is. Therefore,
we rewrite the left side as the average of the explicit and implicit
formulations:

η

2

[Pt+∆t
i+1 − 2Pt+∆t

i + Pt+∆t
i−1

∆x2 +
Pt

i+1 − 2Pt
i + Pt

i−1
∆x2

]
=

Pt+∆t
i − Pt

i
∆t

(5.33)
This yields n linear equations with n unknowns, and this set of
linear equations must be solved simultaneously (as in the im-
plicit case). Thus, the Crank-Nicholson formulation is an implicit
method.

5.3 Stability

In Figs. 5.2 and 5.5 we identified errors at the early time steps,
however, later time steps gave good approximations. We say that
a numerical formulation is stable if an error at one point does not Stable numerical formulation

propagate into larger errors at later steps in the computation. In
this section we will investigate the stability of numerical methods.

If pt
i is the exact solution, while Pt

i is the numerical solution, we
will find conditions for stability, i.e., conditions for the difference
between the exact and numerical solution;

Et
i = pt

i − Pt
i , (5.34)

to stays bounded when t → ∞. Finding requirements for a stable
formulation involves conditions on the relation between time steps
and grid resolution. In the following we will therefore assume that
time steps ∆t and grid sizes ∆x are constant values.

There exist several methods for investigating the stability, how- Several methods in addition to the
von Neumann stability method are
discussed in (Mitchell and Griffiths,
1980).

ever we will only use the von Neumann method. We will also re-
strict our investigation to the explicit and implicit formulations
presented above, while the Crank-Nicholson formulation can be
investigated similarly and is left as an exercise.

The starting point for the von Neumann method is to consider
the difference between the exact and numerical solution Et0 at a
given time step t0. Similar to what we did with the analytical so-
lution, we assume that the function Et0 can be written as a Fourier
series of the form When we found the analytical so-

lution, Eq. (3.77), for the diffusivity
equation, we used the sin-cosine form
of the Fourier series. Here we use the
exponential form instead, employing
that exp(iθ) = cos(θ) + i sin(θ).

Et0(x) =
∞

∑
j=1

γje
iβ jx , (5.35)

where i is the imaginary unit i =
√
−1, and γj and β j are constants.
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To investigate the propagation of the error Et0 for time steps
t > t0, we want to find a function ϵ(x, t) that is a solution to our
numerical formulation, and where ϵ(x, t0) = Et0(x). Let such a
solution be written as

ϵ(x, t) =
∞

∑
j=1

ψj(t)e
iβ jx , (5.36)

where t ≥ t0. Here we assumed that the function ϵ could be split
into a sum where each summand consists of a product of two func-
tions; one function dependent only on the spacial coordinate x
and one function dependent only on the time t. To simplify our
derivations and notation, we will continue considering only a single
element of the sum:

ϵ(x, t) = ψ(t)eiβx . (5.37)

We observe that the original error component Et0 will be bounded
in time if ∣∣∣∣ψ(t + ∆t)

ψ(t)

∣∣∣∣ ≤ 1 . (5.38)

This last inequality is called the von Neumann’s criterion for stability. von Neumann’s criterion for stability

We will deduce this criterion for the explicit and implicit formula-
tions in the following subsections.

5.3.1 Stability analysis for the explicit formulation

Following Eq. (5.20), we might write the explicit difference equation
using the index system as:

η
Pt

i+1 − 2Pt
i + Pt

i−1
∆x2 =

Pt+∆t
i − Pt

i
∆t

. (5.39)

Assume that Pt
i is a solution to the underlying differential equa-

tion, Eq. (3.54), and that Et0 is the difference between the exact and
numerical solution at time step t0 as given by Eq. (5.34). Further,
assume a function ϵ as given by Eq. (5.36), and that this has a nu-
merical solution written as ϵt

i with our numerical index system,
where ϵt

i for t > t0 satisfy the explicit numerical scheme. Let P̃t
i be Here we are a bit sloppy with our no-

tation, using ϵ for both the underlying
error and the numerical representation
of this error. The exact and numerical
representation can be distinguished by
the use of the index notation for the
numerical representation, while there
are no indices when we add an error
to the exact solution.

the numerical solution for t > t0 which is set equal to the exact so-
lution at t0, i.e., P̃t0

i = pt0
i . This solution is also propagated forward

using the numerical scheme:

η
P̃t

i+1 − 2P̃t
i + P̃t

i−1
∆x2 =

P̃t+∆t
i − P̃t

i
∆t

. (5.40)

This is then the numerical solution for t ≥ t0 where we have re-
moved the error at time-step t0.

Then, as Pt
i = P̃t

i + ϵt
i = pt0

i + ϵt
i for t = t0, the numerical scheme

for Pt
i can be written as

η
(P̃t

i+1 + ϵt
i+1)− 2(P̃t

i + ϵt
i ) + (P̃t

i−1 + ϵt
i−1)

∆x2 =

(P̃t+∆t
i + ϵt+∆t

i )− (P̃t
i + ϵt

i )

∆t
, (5.41)
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where ϵt0 = Et0 . Thus, we have an error ϵt0 = Et0 at time-step t0,
and we now want to investigate how this error propagates. Com-
bining the two equations above, we then have:

η
ϵt

i+1 − 2ϵt
i + ϵt

i−1
∆x2 =

ϵt+∆t
i − ϵt

i
∆t

. (5.42)

So also the error in time-step t0, ϵt0 , propagates forward by the
same numerical scheme.

Writing ϵt
i on the form given by Eq. (5.36), using only a single

element of the sum, we have

ϵt
i = ϵ(xi, t) = ψ(t)eiβxi | t ≥ t0 . (5.43)

With this notation we then have

ϵt
i = ϵ(xi, t) = ψ(t)eiβxi

ϵt
i+1 = ϵ(xi + ∆x, t) = ψ(t)eiβ(xi+∆x)

ϵt
i−1 = ϵ(xi − ∆x, t) = ψ(t)eiβ(xi−∆x)

ϵt+∆t
i = ϵ(xi, t + ∆t) = ψ(t + ∆t)eiβxi . (5.44)

Using this notation into Eq. (5.42), we get

η∆t
(∆x)2

(
ψ(t)eiβ(xi+∆x) − 2ψ(t)eiβxi + ψ(t)eiβ(xi−∆x)

)
= ψ(t + ∆t)eiβxi − ψ(t)eiβxi

αψ(t)
(

eiβxi eiβ∆x − 2eiβxi + eiβxi e−iβ∆x
)
+ ψ(t)eiβxi = ψ(t + ∆t)eiβxi

ψ(t)eiβxi
(

1 + α
(

eiβ∆x − 2 + e−iβ∆x
))

= ψ(t + ∆t)eiβxi

ψ(t)
(

1 − 4α sin2
(

β∆x
2

))
= ψ(t + ∆t) .

(5.45)

We then obtain the following expression:

Here we employ that:

i sin(θ) =
1
2

(
eiθ − e−iθ

)
− sin2(θ) =

1
4

(
e2iθ − 2eiθ−iθ + e−2iθ

)
− sin2(θ) =

1
4

(
e2iθ − 2 + e−2iθ

)
ψ(t + ∆t)

ψ(t)
= 1 − 4α sin2

(
β∆x

2

)
. (5.46)

The ratio ψ(t+∆t)
ψ(t) may be interpreted as the ratio of increase in

error during the time interval ∆t . The von Neumann criterion for Strictly speaking the ratio of error
|ψ(t + ∆t)/ψ(t)| must be smaller than
1 −O(∆t) to allow for exponentially
growing solutions.

stability, as given by Eq. (5.38) is that the ratio of increase in error
must be smaller or equal to 1, i.e.∣∣∣∣ψ(t + ∆t)

ψ(t)

∣∣∣∣ ≤ 1 . (5.47)

On the other hand, if this ratio is larger than one, the solution be-
comes unstable.

As our explicit formulation gave Eq. (5.46), we get the following
von Neumann criterion for stability:

The von Neumann criterion for stabil-
ity for the explicit method

∣∣∣∣1 − 4α sin2
(

β∆x
2

)∣∣∣∣ ≤ 1 . (5.48)

Writing out this absolute value inequality, we have

−1 ≤ 1 − 4α sin2
(

β∆x
2

)
≤ 1 . (5.49)
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Since ∆x and ∆t are positive values, the right inequality always
holds as 0 ≤ sin2(β∆x/2) ≤ 1. By multiplying by −1 and using
0 ≤ sin2(β∆x/2) ≤ 1 ) the left inequality can be reformulated as

4α − 1 ≤ 1

α ≤ 1
2

η∆t
(∆x)2 ≤ 1

2

∆t ≤ (∆x)2

2η
. (5.50)

This is then the von Neumann stability condition for the explicit
method.

When given a grid size ∆x, we thus obtain an upper limit for our
time steps in the explicit solution when fulfilling the von Neumann
stability criterion. In other words, whenever Eq. (5.50) holds our
explicit formulation will be stable.

5.3.2 Stability analysis for the implicit formulation

The implicit form of the difference equation using the index system
was given by Eq. (5.24) as

η
Pt+∆t

i+1 − 2Pt+∆t
i + Pt+∆t

i−1
∆x2 =

Pt+∆t
i − Pt

i
∆t

. (5.51)

Following a similar procedure as in the explicit case, we obtain the
following equation for the perturbation error term ϵ:

η
ϵt+∆t

i+1 − 2ϵt+∆t
i + ϵt+∆t

i−1
∆x2 =

ϵt+∆t
i − ϵt

i
∆t

. (5.52)

Filling in equality’s similar to Eq. (5.44), and assuming that ϵ(x, t) =
ψ(t) exp(iβx), we have:

αψ(t + ∆t)
(

eiβxi eiβ∆x − 2eiβxi + eiβxi e−iβ∆x
)
= ψ(t + ∆t)eiβxi − ψ(t)eiβxi

ψ(t + ∆t)eiβxi
(
−1 + α

(
eiβ∆x − 2 + e−iβ∆x

))
= −ψ(t)eiβxi

ψ(t + ∆t)
(
−1 − 4α sin2

(
β∆x

2

))
= −ψ(t)

ψ(t + ∆t)
ψ(t)

=
1

1 + 4α sin2
(

β∆x
2

) .

(5.53)

The condition for von Neumann stability then becomes:
The von Neumann criterion for stabil-
ity for the implicit method

∣∣∣∣∣∣ 1

1 + 4α sin2
(

β∆x
2

)
∣∣∣∣∣∣ ≤ 1 (5.54)

which is always true, since the denominator is always greater than
1. Thus there are no upper limit on the time-step ∆t for the implicit
formulation.
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Application of the von Neumann stability analysis to the Crank-
Nicholson formulation, shows that it is also unconditionally stable,
just as the implicit case. As a final note, the von Neumann method
is strictly speaking just valid for pure initial value problems with
periodic initial data. However, it gives a necessary condition for
stability regardless of the initial data.

5.4 Comparison of methods

The explicit method avoids matrix inversion, as the pressures are
obtained explicitly from pressures at the previous time step. There-
fore the explicit formulation is simpler than the implicit formula-
tion, and accordingly need less computational power. As we have
to store the matrix, the implicit method also needs more memory.
This can be significant for larger grids, however, this is usually not
a big issue with modern day memory capacity. As the matrix inver-
sion is conducted only once in our simple 1D case, the difference
in computational power is negligible. Larger and more complex
grids and varying time-steps will give a significant difference in
computational time for the two methods. This difference is more
pronounced for multi-phase cases, which we will treat later in this
book, as we then need to update the matrix in every time-step, and
therefore also invert the matrix in every time-step.

Both the explicit and the implicit method use the second-difference
quotient, Eq. (4.44), to approximate the second derivative, thus
they both have a discretization error of order O(∆x2). For the time
derivative the explicit case use the forward-difference, while the
implicit method use the backward-difference. Both the forward
and backward-difference have a truncation error of order O(∆t),
hence the truncation error is of the same order for the two methods.
Thus, both discretization errors are of the same order for the two
methods.

The explicit formulation becomes unstable for large time steps,
as indicated by the von Neumann stability criterion, Eq. (5.50):

∆t ≤ (∆x)2

2η
. (5.55)

We observe that the upper boundary for the time step size is lim-
ited by both grid block size and properties of the rock and fluid.
It is the grid block with the smallest value of (∆x)2/(2η) that de-
termines the limiting time step size. For grids with varying grid
block size, this limitation may be severe. This is one reason why the
explicit method is seldom used for realistic grids of reservoirs.

From Eq. (5.54) we observe that the von Neumann stability cri-
terion applied to the implicit formulation indicate that the implicit
method is unconditionally stable, i.e., the method is stable for all
time step sizes. The additional computational cost per time step for
the implicit method compared to the explicit method is in practice
compensated for by the possibility of using larger time steps. How-



84 reservoir simulation

ever, as larger time steps lead to larger numerical errors, one always
have to check that the numerical discretization errors are within
acceptable limits.

The Crank-Nicholson formulation has less discretization error
than the two other methods, as the central approximation of the
time derivative, Eq. (4.40), has a truncation error of order O(∆t2),
compared to a truncation error of order O(∆t) for the explicit and
implicit cases. Applying a von Neumann stability analysis to the
Crank-Nicholson formulation, similar to what was done for the
other two formulations above, yields that the Crank-Nicholson
method is unconditionally stable, just as the method using the
implicit formulation. Thus the Crank-Nicholson method has a
smaller order for its discretization error than the other two methods
presented above, and at the same time it is unconditionally stable.
This could have indicated that the Crank-Nicholson method is a
preferred method. Unfortunately, the Crank-Nicholson method
can give oscillating (albeit decaying) results for the solved pressure
when ∆t > (∆x)2/(2η). It thus have a similar time step range as the
explicit method, but at a higher computational cost. It is therefore
seldom used.

5.5 Exercises

Exercise 5.1 Create a Python script to calculate both the explicit
and implicit solution for the pressure. The basic data is given in
Table 5.1.

SPE Metric SI
l 200 m 200 m
k 100 mD 1.0 × 10−13 m2

µ 1 cP 1 × 10−3 Pa s
ϕ 0.2 0.2
ct 1 × 10−4 bar−1 1 × 10−9 Pa−1

pl 200 bar 2 × 107 Pa
pr 100 bar 1 × 107 Pa

Table 5.1: Basic data for exam-
ple.

a) Plot the pressure function for the same set of times as used in
Exercise 3.1. Compare the numerical solutions to the analytical
solutions.

b) Calculate the von Neumann stability criterion for the explicit
solution. Investigate numerical solutions around the stability
criterion. When does your simulations break down? Compare
the solutions (when you get an explicit solution) to the implicit
method. How does the implicit method behave for time steps
larger than the time step limit given by the stability analysis for
the explicit case?

Exercise 5.2 Complete the derivation between Eq. (5.52) and Eq. (5.53)
for the von Neumann criterion for the implicit case.

Exercise 5.3 Derive the von Neumann criterion for the Crank-
Nicholson method.
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Reservoir simulation of single-phase flow

Rocket engines burning fuel so fast
Up into the night sky they blast
Through the universe the engines whine
Could it be the end of man and time?

Black Sabbath - Into The Void

In this chapter we will continue with the one-dimensional single
phase case considered in Chap. 3 and Chap. 5. In this chapter we
will solve the diffusivity equation, Eq. (3.52), using the reservoir
simulator OPM-Flow. OPM-Flow is a reservoir simulator with up to
three phases (oil, water and gas). It is not created for single phase
flow, so even though we will use it for single phase flow, the simu-
lator itself will solve multi-phase equations with only one non-zero
phase. This also means that we need to define a two-phase model
(e.g., oil and water), but we will only have water in the model.

OPM-Flow is based on providing an input file, by some called an
input deck1, which contain all reservoir data, fluid data and the 1 The term deck for a computer file

goes back to the ancient (pre 1980)
times of punched cards. Each card
represented a line in a text file.

Picture by Arnold Reinhold (Wikipedia)

initial and boundary conditions (e.g., well control). The input file
will be described in the following.

6.1 OPM-Flow input files (*.DATA-files)

The name of the main input file to OPM-Flow is commonly written
with capital letters, and with the file extension *.DATA. These files
are therefore sometimes referred to as DATA-files. The simulator
input can be completely specified in the DATA-file, but it is most
common to split the input over several files that are read in using
INCLUDE keywords in the DATA-file. There is no naming convention
for these included files.

The DATA-file is split into sections. Each section starts by a key-
word, being the name of the section. Be aware that the sections
need to be in correct order. We will describe all the DATA-file sec-
tions in the following, together with examples of keywords for the
different sections.
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6.1.1 RUNSPEC

The first section gives the overall settings of the simulation. This
include

• Title

• Dimensions of the simulation grid

• Which phases are present (water, oil, gas)

• Start date for the simulation

• Unit system (metric, oil field units, etc.)

• Dimensions of parts of the system (e.g., number of wells, number
of saturation points in the flow parameter tables, etc.)2 2 We define the dimensions for legacy

reasons: In old programming lan-
guages it was impossible to add
memory dynamically. One therefore
had to specify all memory usage at the
beginning of the run.

An example of a RUNSPEC section is shown below. This example
is for the single phase case considered in the previous and present
chapters. It is not possible to run OPM-Flow with a single phase. To
circumvent this, we tell the simulator to consider two phases, but
we will later initialize the model with one phase only and inject
only this phase into the model.

In the OPM-Flow *.DATA-files lines are
commented out by a double dash:
--. So the lines shown in green are
commented out and not read by the
simulator.

RUNSPEC

-- --------------------------------------------------

TITLE

1D model for water

DIMENS

102 1 1 /

-- The number of fluid property (PVT) tables is

-- inferred from the TABDIMS keyword; when no

-- data is included in the keyword, then the

-- default values are used.

TABDIMS

/

-- We do not have oil in our system; we still need

-- the OIL keyword since the Flow simulator is

-- a multiphase simulator.

OIL

WATER

-- The unit system to be used

METRIC

-- The start of simulation

START

1 ’JAN’ 2015 /
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WELLDIMS

-- Item 1: maximum number of wells in the model

-- - there are two wells in the problem;

-- injector and producer

-- Item 2: maximum number of grid blocks connected

-- to any one well

-- - must be one as the wells are located

-- at specific grid blocks

-- Item 3: maximum number of groups in the model

-- - we are dealing with only one ’group’

-- Item 4: maximum number of wells in any one group

-- - there must be two wells in a group

-- as there are two wells in total

2 1 1 2 /

-- The UNIFOUT keyword is used to request the

-- output files to be on a unified format, i.e.

-- the output from different timesteps are

-- collected into a single file.

UNIFOUT

We use keywords to define properties in the *.DATA-file. These
keywords are always written with capital letters. Note that the
simulator is case-sensitive.

As an example, consider the keyword DIMENS. This keyword
defines the dimensions of the model. Note that these values are
not maximum values, they are the actual size of the model. And
these dimensions will dictate the number of input data needed in
other keywords. As an example, since our model has size 102 ×
1 × 1 = 102, we will need to pass 102 values for, e.g., porosity later
in the DATA-file. All keywords are described in detail in the OPM
Manual, including examples of how to use them. The manual for OPM-Flow is

found on the OPM website:
https://opm-project.org/

In our one dimensional example considered earlier we used pres-
sure (Dirichlet) boundary conditions. There are no option for such
boundary conditions in OPM-Flow. We will therefore use dummy
grid blocks to mimic a Dirichlet boundary condition for the whole
cross-sectional area of the ends of the model. So our actual model is
only the 100 grid cells in the middle, with two dummy cells at each
side giving a total of 102 cells.

6.1.2 GRID

The second section, the GRID section, defines the geometry of the
grid and petrophysical properties (porosity, permeability) of the
grid cells. From the input in the GRID section the simulator calcu-
lates properties such as the cell’s pore volume, depth, and inter-cell
transmissibilities. Note that OPM-Flow is using a two-point flux ap-
proximation by default, as presented in Sec. 7.2.1. An example of
the GRID section for our 1D example is shown below.

GRID

-- --------------------------------------------------

https://opm-project.org/
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-- The INIT keyword is used to request an .INIT file.

-- The .INIT file is written before the simulation

-- actually starts, and contains grid properties and

-- saturation tables as inferred from the input

-- deck. There are no other keywords which can be

-- used to configure what is written to the .INIT

-- file.

INIT

DX

-- There are in total 102 cells with length 2.0m

-- in x-direction. The main part of the model is

-- the 100 cells in the middle. The two outer

-- cells are dummy cells with high permeability

-- to distribute the flow from the wells to the

-- full cross-section of the model.

102*2.0 /

DY

102*2.0 /

DZ

102*2.0 /

TOPS

-- The depth of the top of each grid block

102*1000 /

PORO

-- Constant porosity of 0.2

0.5 100*0.2 0.5 /

PERMX

-- Permeability 100mD for the internal cells, a

-- high permeability for the dummy cells

100000.0 100*100.0 100000.0 /

PERMY

-- As the model is 1D, the PERMY is not relevant

102*100.0 /

PERMZ

-- As the model is 1D, the PERMZ is not relevant

102*100.0 /

In the above example the grid geometry is given by specifying
each grid block as a horizontal rectangle with dimensions given
by the keywords DX, DY, and DZ, and top depth given the keyword
TOPS. This method is applicable to simple toy models only, in real
reservoir models the geometry is specified using corner-point ge-
ometry (see page 113) through the keywords COORD ans ZCORN. Al-
though in ASCII format, the data for these keywords are always
generated by software and not meant to be read or edited by hu-
mans.
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6.1.3 EDIT

The EDIT section enables changes to the grid structure defined in
the GRID section. This includes pore volume multipliers, changes to
the transmissiblities, etc. Most of the properties defined in the EDIT

section can also be defined in the GRID section, thus not all models
include an EDIT section. However, the EDIT section can be useful in,
e.g., history-matching loops.

Our 1D example does not have an EDIT section.

6.1.4 PROPS

The PROPS section defines the flow parameters (relative permeability
and capillary pressure), fluid properties (PVT) and rock properties
(rock compressiblity). The PROPS section for our 1D example is
shown below.

PROPS

-- -------------------------------------------------

SWOF

-- This keyword is not used in our case, since we

-- do not have oil in our system.

-- Sw Krw Krow Pcow

-- (bar)

0.0 0.0 1.0 0.0

1.0 1.0 0.0 0.0 /

DENSITY

-- Oil Water Gas

-- (kg/m3) (kg/m3) (kg/m3)

849 1025 0.82 /

-- PVT tables for water. We only have one table,

-- consisting of a single line (only the reference

-- pressure).

PVTW

-- REF.PRES. REF. FVF COMPRESSIBILITY REF.VISC.

-- -> VISCOSIBILITY

-- (bar) (m3/m3) (1/bar) (cP) (1/bar)

150 1.01 1.0e-4 1.0 0.0e+0 /

-- PVT tables for oil. This keyword is not used in

-- our case, since we do not have oil in our system.

PVDO

-- PRES. FVF. VISC.

20.68 1.05 2.85

55.16 1.02 2.99

551.58 1.01 3.00

/

ROCK

-- REF.PRES COMPRESSIBILITY

-- (bars) (1/bars)

150 0.0e-6 /
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6.1.5 REGIONS

The REGIONS section is used to define sub-regions of the reservoir
model where different properties applies. As an example, one can
define different fluid properties for different regions in the PROPS

section. Then one will specify the spatial distribution of the differ-
ent fluid property classes in this section. The REGIONS section can
also define regions with different model initialization, defined in
the SOLUTION section.

Our 1D example does not have an REGIONS section as we only
have a single region for both fluid properties and initialization.

6.1.6 SOLUTION

The SOLUTION section defines how to initialize the model. This is
usually done by defining the depth of the fluid–fluid contacts (oil–
water contact and gas–oil contact), and the pressure at a specified
depth. The corresponding keyword is EQUIL. Alternatively the
state of each grid-block (pressure and saturation) can be specified
directly. In our 1D example we use the latter method.

SOLUTION

-- -------------------------------------------------

-- Initial water saturation for each grid cell

-- We have only water, so the saturation is set

-- to unity.

SWAT

102*1.0

/

-- Initial pressure for each grid cell.

PRESSURE

102*100.0

/

6.1.7 SUMMARY

The SUMMARY section defines what should be saved from the simula-
tion. It is common to include the keyword ALL; despite its name this
keyword does not include all output, but all the commonly used
keywords. The SUMMARY section for our 1D example is shown below.

SUMMARY

-- -------------------------------------------------

-- This keyword enable printing out all the most

-- commonly used data.

ALL

-- This keyword enable printing out the
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-- cummulative CPU use at different time steps.

TCPU

6.1.8 SCHEDULE

The SCHEDULE section defines when and where to add wells, and
how to operate these wells. It also defines how long the simula-
tion shall run, and what should be printed to RESTART files. As the
RESTART files store most of the grid data, such as pressure and sat-
uration values, they are not only used for restarting simulations,
but also for visualizing the simulation results. Thus the time steps
between your simulation visualization in ResInsight needs to be
specified in this section. The SCHEDULE section for our 1D example
is shown below. Note that this section ends with the keyword END,
which indicates the end of the simulation input.

SCHEDULE

-- -------------------------------------------------

-- This keyword enable printing out restart files.

RPTRST

BASIC=1 /

-- The WELSPECS keyword is used to defined some

-- general data for the wells; where they enter

-- the grid, and what kind of fluids they handle.

WELSPECS

-- Item #:

-- 1 2 3 4 5 6

’PROD’ ’G1’ 102 1 1005 ’WATER’ /

’INJW’ ’G1’ 1 1 1005 ’WATER’ /

/

-- The COMPDAT keyword defines how a well is

-- connected to the reservoir (where it is

-- completed/perforated)

COMPDAT

-- Item #:

-- 1 2 3 4 5 6 7 8 9

’PROD’ 102 1 1 1 ’OPEN’ 1* 1* 0.005 /

’INJW’ 1 1 1 1 ’OPEN’ 1* 1* 0.005 /

/

-- This keyword defines well constrains for

-- production wells

WCONPROD

-- Item #:1 2 3 4-8 9

’PROD’ ’OPEN’ ’BHP’ 5* 99.9 /

/

-- This keyword defines well constrains for

-- injection wells

WCONINJE
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-- Item #:1 2 3 4 5-6 7

’INJW’ ’WATER’ ’OPEN’ ’BHP’ 2* 199.9 /

/

-- This keyword defines times when the simulation

-- shall advance. One can use both dates and times.

TSTEP

5*0.02 /

TSTEP

4*0.1 /

END

6.2 Reservoir simulation of single phase flow

In this section we will run the 1-dimensional single phase reservoir
simulation model described in the previous section. We assume the
input data in the previous section has been collected into an ASCII

file named SINGLEPHASE.DATA. You can collect the data using any
text editor.

To run the input deck, write the following in the command line

flow SINGLEPHASE1D.DATA

This will run the simulation model, and should produce an output
that starts similar to

**********************************************************************

* *

* This is flow 2022.10 *

* *

* Flow is a simulator for fully implicit three-phase black-oil flow, *

* including solvent and polymer capabilities. *

* For more information, see https://opm-project.org *

* *

**********************************************************************

Using 1 MPI processes with 2 OMP threads on each

Reading deck file ’SINGLEPHASE1D.DATA’

The restart file is stored using the file extension *.UNRST (unified
restart). While the name of the restart file links it to restarting the
simulation at different time-steps, the restart file is probably more
frequently used for visualization purposes. Storing data needed
for a restart involves storing e.g. pressure and saturation for all
grid cells, which opens up for visualizing the same data in three
dimensions.

The data stored in the restart file can be visualized using ResIn-
sight. In Fig. 6.1 is an example showing the pressure at time step 5
for our grid.

We now want to plot the resulting data using the Python pack-
age ecl. For this, we start by loading the specific ecl package we
need in Python, in our case the package EclFile:

from ecl.eclfile import EclFile
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Figure 6.1: Reservoir simu-
lation of the single phase 1D
case visualized in ResInsight.
This visualization shows the
pressure distribution along the
model at time step 5.

We can then load the restart file using the ecl package EclFile,
and then extract the pressure data at the different time steps, as
follows:

hRestartFile=EclFile(’SINGLEPHASE1D.UNRST’)

iTimeSteps=hRestartFile.num_report_steps()

afxGrid=np.arange(1.0,fModelLength,2.0)

plt.figure()

fMaxtime=hRestartFile.iget_restart_sim_days(iTimeSteps-1)

cmap = plt.get_cmap(’gnuplot’)

for iTimeStep in range(1,iTimeSteps):

fTime=hRestartFile.iget_restart_sim_days(iTimeStep)

afPressure=hRestartFile.iget_named_kw(’PRESSURE’,iTimeStep

↪→ )

plt.plot(afxGrid,afPressure[1:-1]*1E5,color=cmap(1-fTime/

↪→ fMaxtime))

Here we are using several build in functions for the restart-
file structure in ecl, including getting the number of restart
steps (.num_report_steps()), the physical time of the differ-
ent restart steps (.iget_restart_sim_days()), and extracting
the data we are interested in, which in our case is the pressure
(.iget_named_kw(’PRESSURE’,iTimeStep)). You can obtain a full
description of all built-in functions by typing

>>> help(hRestartFile)

in the Python command line (note that the >>> should not be typed
in, this is just the standard line-start in Python when running
Python in the command line window). The help() function should
give an output similar to the following.

Help on EclFile in module ecl.eclfile.ecl_file object:

class EclFile(cwrap.basecclass.BaseCClass)

| Method resolution order:

| EclFile

| cwrap.basecclass.BaseCClass

| __builtin__.object

|

| Methods defined here:

|

| __contains__(self, kw)

| Check if the current file contains keyword @kw.

|

| __getitem__(self, index)

| Implements [] operator; index can be integer or key.

|

| Will look up EclKW instances from the current EclFile

| instance. The @index argument can either be an integer, in

| which case the method will return EclKW number @index, or

| alternatively a keyword string, in which case the method will

| return a list of EclKW instances with that keyword:

|
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| restart_file = ecl_file.EclFile("ECLIPSE.UNRST")

In the Python script above we have also included a line for plot-
ting the pressure at the different time-steps, where the color coding
represent the physical time for the plotted pressure distribution.
Running the script gives the plot shown in Fig. 6.2.
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Figure 6.2: The pressure dis-
tribution of the reservoir sim-
ulation of the single phase 1D
case at different time steps.

The pressure at the different time steps can then be compared to
the analytical solution, as shown in Fig. 6.3. For most time steps,
the solution from OPM-Flow and the analytical solution match up
to a fair degree. However, for the early time steps we see large
discrepancies. For the OPM-Flow solution there is a strong kink from
a smooth curve to a pressure which equal the initial pressure. This
numerical error linked to the mass balance tolerance; tightening this
from the default 10−6 to 10−10 will remove these kinks. Improved
match with the exact solution also requires shorter time steps.
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Figure 6.3: Comparison of the
reservoir simulation results
with the analytical solution.
The full-drawn line are the
simulation results, while the
dashed line is the analytical
solution. The results shows
some clear discrepancies.

In the following command line we have specified the maximal
time step explicitly, and we have also set a tighter mass balance
tolerance:

flow SINGLEPHASE1D.DATA --tolerance-mb=1e-10 --solver-max-time-step-in-days=0.005
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The resulting pressure plot is shown in Fig. 6.4. The plot now
shows an almost perfect match. This example shows that one al-
ways need to carefully assess the numerical solution with respect to
time step size and grid size.
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Figure 6.4: Comparison of the
reservoir simulation results
with the analytical solution,
after running the simulation
with reduced time step length
and stricter mass balance toler-
ance.

In might be surprising that our earlier simple Python scripts is
doing a better job in capturing the evolution of the pressure in our
1D model than the rather large and complicated software OPM-Flow.
Keep in mind that OPM-Flow is not build for such simple cases, but
rather for multi-phase simulations on complex grids.

6.3 Well inflow modeling

Modeling of well inflow and outflow is at the same time both very
important and very challenging. We will only briefly introduce it in
this section. We will sketch a well inflow model derived by Peace-
man, and which is included in OPM-Flow. We will also compare
the simulation results from OPM-Flow with external calculations of
extensions of the Peaceman model.

In our one-dimensional OPM-Flow example above, we used
dummy grid blocks to mimic a Dirichlet boundary condition for
the whole cross-sectional area of the ends of the model. When mod-
eling reservoir fluid flow, the injection and production of fluids
happen through wells. We therefore need to couple the wells and
the reservoir through an appropriate model for well inflow and
outflow. Ideally, we would have a fine scale grid able to fully re-
solve the well so that we could have used either a Dirichlet or von
Neumann boundary condition on the rock surface towards the well.
Except for specialized near well-bore models, this is unrealistic, as
the amount of grid cells would make the computational cost in-
hibiting. We therefore need a model for coupling the well to the
reservoir.

Our inflow model is based on assuming radial flow in the near
well-bore region. This is a fair approximation for a vertical well
when the reservoir height is almost constant in the near well region.
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Figure 6.5: Vertical fully pen-
etrating well in a reservoir of
constant thickness h.

Such a situation is illustrated in Fig. 6.5. Here, the dashed line in-
dicates the perforated part of the well, of height h equal the height
of the reservoir. With a constant porosity and permeability field this
idealized example yields horizontal radial flow.

Starting with the diffusivity equation, Eq. (3.52), we can reformu-
late it for radial flow:

η
1
r

∂

∂r

(
r

∂p
∂r

)
=

∂p
∂t

. (6.1)

As pressure diffuse relative fast, we can assume a steady state
solution close to the well-bore. At steady state, the time derivative
in Eq. (6.1) is zero, yielding the equation

∂

∂r

(
r

∂p
∂r

)
= 0 . (6.2)

Integrating this equation once gives

∂p
∂r

=
pc

r
, (6.3)

where pc is a constant. To determine this constant, we will inves-
tigate the fluid flow right at the interface between the well and
the reservoir. The well surface towards the reservoir rock has an
area A = 2πrh, where h is the height of the perforated part of the
well, here assumed to be equal the height of the reservoir. Then the
Darcy velocity at the rock surface is

q = −Qw

A
= − Qw

2πrh
, (6.4)

where Qw is the is the volumetric flow rate in the well at reservoir
conditions. By convention, we use a positive Qw for production.
Note the distinction between the volumetric flow rate Qw and the
Darcy velocity given by q.

From Darcy’s law, Eq. (3.19), now using cylinder coordinates, we
get

− k
µ

∂p
∂r

= q = − Qw

2πrh
. (6.5)

Combining Eq. (6.5) with Eq. (6.3) we see that the constant pc is
given as

pc =
Qwµ

2πkh
. (6.6)
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This constant, which has dimension Pa, is called the characteristic
pressure, and is an important constant in radial flow. Characteristic pressure

Let rw be the well-bore radius, and integrate the pressure from
the well-bore and to a distance r into the reservoir. Using Eq. (6.3)
we then get

∫ p(r)

pw
dp =

∫ r

rw

pc

r
dr

p(r)− pw = pc (ln(r)− ln(rw)) = pc ln
(

r
rw

)
. (6.7)

Rearranging, the radial pressure distribution p(r) is given by the
equation

p(r) = pw + pc ln
(

r
rw

)
, (6.8)

where r is the radial distance from the well, pw is the pressure in
the well, rw is the well radius, while pc is the characteristic pressure
as given by Eq. (6.6). This equation is well known from well-testing.

You will find a more in-depth deriva-
tion of these well-pressure equa-
tions in Lecture notes in well-testing:
https://folk.ntnu.no/carlfrbe/

books/wellTesting.pdf.

Figure 6.6: An illustration
of the radial pressure profile
around a well together with
the numerical pressure profile
for the grid. The block pres-
sure pb and equivalent radius
re are indicated in the figure.

We will now use the radial pressure distribution for steady-state
radial flow, as given by Eq. (6.8), to derive a coupling between the
well pressure pw and the well block pressure pb. The well block
pressure is the numerical pressure in the grid cell containing the
well, and used for to calculate inter-cell flows from the two-point
flux approximation (Sec. 7.2.1). Both the well pressure and block
pressure are indicated in Fig. 6.6. This figure also indicate the nu-
merical pressure profile; the pressures in the grid cells surrounding
the grid block containing the well.

We are seeking an well inflow model of the form

Qw = λTwb(pb − pw) , (6.9)

where λ is the phase mobility (in single phase the reciprocal of the
viscosity µ), while Twb is the well connection transmissibility factor.

As indicated in Fig. 6.6, there exists a radius re such that the
flowing grid block pressure pb is equivalent to the pressure p(re)

given by Eq. (6.8). This radius re is called the equivalent well-block

https://folk.ntnu.no/carlfrbe/books/wellTesting.pdf
https://folk.ntnu.no/carlfrbe/books/wellTesting.pdf
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radius. From Eq. (6.8), the well block pressure pb = p(re) is related The equivalent well-block radius
is sometimes called the pressure
equivalent radius.

to the well pressure pw as

pb = p(re) = pw + pc ln
(

re

rw

)
. (6.10)

Writing out the characteristic pressure pc, then restructuring
Eq. (6.10) gives

Qw =
2πkh

µ

(
ln
(

re

rw

))−1

(pb − pw) . (6.11)

Thus we see that the flow into a well from a grid block is deter-
mined by the pressure difference between the grid block pressure
pb and the well pressure pw. With the form given by Eq. (6.9) we
have λ = 1/µ, while

Twb =
2πkh

ln
(

re
rw

) . (6.12)

The only unknown still to be determined in the above equation is
the equivalent well-block radius re.

pb
ps

ps

ps

ps

Figure 6.7: A two-dimensional
grid around a central cell with
a well in the middle.

We will only derive re for a regular grid where cell-dimensions
in x and y direction are equal; ∆x = ∆y. To determined re, we
start with the assumption that Eq. (6.8) holds, and consider the
two-dimensional grid around a block with a well in the middle, as
indicated in Fig. 6.7. Let pb denote the pressure in the central cell.
Assuming symmetry, we can assume that the four surrounding cells
have the same pressure ps.

Start with the general equation for single phase flow, as given by
Eq. (3.36), but here extended with a sink/source term consisting of
the volumetric flux times the density giving the mass flux Qwρ:

∇ ·
(

kρ

µ
∇p
)
=

∂

∂t
(ϕρ) + δQwρ . (6.13)

Here δ is the Dirac-delta function. Assuming constant density ρ, The Dirac-delta function is zero
everywhere except at a single point,
and the integral over the entire space is
equal to one.

permeability k and viscosity µ, and further assuming steady-state
conditions so that the time derivative becomes zero, we can sim-
plify to

k
µ
∇2 p = δQw . (6.14)

Using the centered second-difference quotient, Eq. (4.44), for the
second derivative in two dimensions, we have

∂2 p
∂x2 (x, y) +

∂2 p
∂y2 (x, y) ≃

p(x + ∆x, y)− 2p(x, y) + p(x − ∆x, y)
∆x2

+
p(x, y + ∆y)− 2p(x, y) + p(x, y − ∆y)

∆y2 . (6.15)

When ∆x = ∆y and all pressure in all the surrounding cells are
equal ps, as indicated in Fig. 6.7, we then have

∂2 p
∂x2 (x, y) +

∂2 p
∂y2 (x, y) ≃ 4ps − 4pb

∆x2 . (6.16)
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Using the approximation Eq. (6.16) in Eq. (6.14), we then have

k
µ

4ps − 4pb
∆x2 =

Qw

∆x∆yh
. (6.17)

As we discretize, the point source given by the Dirac delta function
is transformed to a division by the cell volume. As ∆x = ∆y, we
then get

4kh
µ

(ps − pb) = Qw . (6.18)

From Eq. (6.8) we have

ps = p(∆x) = pw + pc ln
(

∆x
rw

)
. (6.19)

Combining Eq. (6.19) with Eq. (6.18), and writing out the character-
istic pressure pc, we get

pb = pw +
Qwµ

2πkh

(
ln
(

∆x
rw

)
− π

2

)
= pw + pc ln

(
e−

π
2 ∆x
rw

)
.

(6.20)
Assuming Eq. (6.8) holds, then for a well in the center of a

squared grid cell of side-length ∆x we have shown that
Equivalent well-block radius

re = e−
π
2 ∆x . (6.21)

This was shown in (Peaceman, 1978), where Peaceman also showed
that he obtained similar results numerically for a repeated five-spot
pattern of injectors and producers. These results were extended in
(Peaceman, 1983), where it was shown that for a well perforated
vertically in the center of a grid block with side-lengths ∆x and ∆y
in an anisotropic permeability field he equivalent well-block radius
is given by

re = 0.28

√
∆x2

√
ky/kx + ∆y2

√
kx/ky

(ky/kx)
1
4 + (kx/ky)

1
4

. (6.22)

Note that e−
π
2
√

2 ≈ 0.294, so Eq. (6.22) is only approximately equal
to to Eq. (6.21) when ∆x = ∆y and kx = ky. Eq. (6.22) is the formula
used in OPM-Flow when calculating Twb.

re ≃ e−
π
2 ∆x re ≃ e−

2π−ln(4)
3 ∆x re ≃ e−

2π−ln(20)
2 ∆x

Figure 6.8: Figure indicating
the well placement close to
no-flow boundaries (indicated
by thick gray lines), and the as-
sociated equivalent well-block
radius re.

Some examples of pre-factors for wells close to no-flow bound-
aries are given in (Kuniansky and Hillestad, 1980). Three of them
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are shown in Fig. 6.8. We see that for a well placed in the corner

of the grid will have a pre-factor e−
2π−ln(20)

2 ≃ 0.193, a difference
from an internal point with pre-factor e−

π
2 ≃ 0.208. While such

changes might be detectable, they are comparatively small com-
pared to changes due to different placement of the well within the
grid block.

To check the inflow performance in OPM-Flow, we will consider a
two-dimensional example. We created a 9 × 9 grid, with a producer
in each corner and an injector in the middle grid cell, as illustrated
in Fig. 6.3. The model has a thickness of ∆z =10.0 m, horizontal
dimensions of ∆x = ∆y =10.0 m, and a permeability of 100.0 mD.
The wells have inner diameter of 0.2 m. To write out information on
the wells, we use the following keyword before the first time step,
and terminate the same keyword right after the first time step:

Figure 6.9: A 9 × 9 grid with a
producer in each corner and an
injector in the middle.

RPTSCHED

’WELLS=1’ ’WELSPECS’ FIP=1 /

-- This keyword defines times to when the simulation

-- shall advance. One can use both dates and times.

TSTEP

0.01 /

RPTSCHED

’NOTHING’ /

This keyword add information to the print file, which has the out-
put extension *.PRT. In the print file we find the following output:

------------------------------------------------------------------------------

: WELL : GRID : CMPL: CENTRE : OPEN: SAT : CONNECTION : INT :

: NAME : BLOCK : NO# : DEPTH : SHUT: TAB : FACTOR* : DIAM :

: : : : METRES : : : CPM3/D/B : METRES :

-----------------------------------------------------------------------------

: INJW : 5, 5, 1 : 1 : 1005.0 : OPEN: 1 : 17.944893 :0.200000:

-----------------------------------------------------------------------------

: PROD4 : 9, 9, 1 : 1 : 1005.0 : OPEN: 1 : 17.944893 :0.200000:

-----------------------------------------------------------------------------

: PROD3 : 1, 9, 1 : 1 : 1005.0 : OPEN: 1 : 17.944893 :0.200000:

-----------------------------------------------------------------------------

: PROD2 : 9, 1, 1 : 1 : 1005.0 : OPEN: 1 : 17.944893 :0.200000:

-----------------------------------------------------------------------------

: PROD1 : 1, 1, 1 : 1 : 1005.0 : OPEN: 1 : 17.944893 :0.200000:

-----------------------------------------------------------------------------

Thus the simulator has calculated the connection factor
17.944 cP m3 d/bar. Converting this to SI units, this corresponds
to 2.078 × 10−12 m3.

When the well is in the center of the grid cell, then the OPM-Flow

simulator calculates the well connection factor Twb using the equiv-
alent radius re as given by Eq. (6.22). Since we have constant grid
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cell sizes of ∆x = ∆y =10.0 m and constant permeability, we get

re = 0.28

√
∆x2

√
ky/kx + ∆y2

√
kx/ky

(ky/kx)
1
4 + (kx/ky)

1
4

= 0.28
10 m

√
2

2
≃ 1.98 m .

(6.23)
The well connection factor, as given by Eq. (6.12), can then be calcu-
lated as (100 mD = 9.87 × 10−14 m2):

Twb =
2πkh

ln
(

re
rw

) =
2π · 9.87 × 10−14 m2 · 10 m

ln
(

1.98 m
0.1 m

) = 2.077 × 10−12 m3 .

(6.24)
We see that this equals the number used by OPM-Flow.

When the well is no longer in the center of the grid cell, no
longer vertical, no longer straight, etc., the calculation of the equiva-
lent radius becomes complicated. It is quite common to use special
stand-alone software for calculating the well connection factor, and
then use this externally calculated well connection factor instead
of letting OPM-Flow calculate the connection factor from the well
radius. The well connection factor can be included in the COMPDAT

keyword. Including the well connection factor as shown below
would yield the same solution as a well diameter of 0.2 m.

COMPDAT

-- Item #:

-- 1 2 3 4 5 6 7 8 9

’PROD1’ 1 1 1 1 ’OPEN’ 1* 17.944893 /

’PROD2’ 9 1 1 1 ’OPEN’ 1* 17.944893 /

’PROD3’ 1 9 1 1 ’OPEN’ 1* 17.944893 /

’PROD4’ 9 9 1 1 ’OPEN’ 1* 17.944893 /

’INJW’ 5 5 1 1 ’OPEN’ 1* 17.944893 /

/

6.4 Exercises

Exercise 6.1 Compile the Flow input deck from the chapter above,
and run the simulation case. Create a Python script to compare the
pressure from the numerical solution to the analytical solution. The
basic data is given in Table 5.1.

SPE Metric SI
l 200 m 200 m
k 100 mD 1.0 × 10−13 m2

µ 1 cP 1 × 10−3 Pa s
ϕ 0.2 0.2
ct 1 × 10−4 bar−1 1 × 10−9 Pa−1

pl 200 bar 2 × 107 Pa
pr 100 bar 1 × 107 Pa

Table 6.1: Basic data for exam-
ple.

a) Open the simulation results in ResInsight. Plot the water injec-
tion rate and the average reservoir pressure over time. Write a
python script to plot the same results.

b) Coarsen the reservoir grid, first to 50, then to 10 grid cells. Ob-
serve and discuss how the grid size affects the resulting pressure
distribution.
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Exercise 6.2 Extend the 1D grid to a quadratic 2D grid as indicated
in Fig. 6.3. The number of grid cells in the figure is just indicative;
your model should have 100 × 100 cells with a side-length of 200 m.
The initial pressure is 150 bar, while the injection pressure is 200 bar
and the production pressure is 100 bar. Run the model until steady
state.

Producer

Injector

Figure 6.10: Figure indicat-
ing the grid cells for the 2D
square. Remember that the
number of grid cells in the
figure are just for illustration
purposes.

a) Investigate the pressure profile in ResInsight.

b) Use the ecl python library to plot the pressure along the diago-
nal between the wells.

c) Change the well control to injection and production of 25 m3/d.
Plot the pressure along the diagonal. Optional: Can you describe
the pressure profile using the infinite acting line source solution
for drawdown and the superposition principle.

Exercise 6.3 In this exercise we will investigate grid size sensitivity,
the effect of wells placed off center in cells, and wells placed in
neighbor cells.

Consider a reservoir of size 1890 × 1890 × 50 m. Permeability is
100 mD, and porosity is 0.2. The reservoir depth (top of reservoir) is
at 1500 m, and initial pressure (at reference depth 1525 m) is 200 bar.
The reservoir is water filled.

All wells are vertical and completed in the whole thickness of the
reservoir, and have a diameter of 0.2 m

A water injector is placed at the (x,y) coordinate (135 m,1755 m),
and is injecting at a constant bottom hole pressure (BHP) of 300 bar
and a maximum rate of 1500 m3/d.

We will consider a number of producer placements. All produc-
ers will produce at a constant BHP of 170 bar and maximum rate of
10 000 m3/d.

a) A single producer is placed at (945 m,945 m). Compare the pro-
duction rate for four grid call sizes: 270 × 270 m, 90 × 90 m,
30× 30 m, and 10× 10 m, and inspect the pressure field in ResIn-
sight.

b) A single producer is placed at (985 m,985 m). Compare the pro-
duction rate for three grid call sizes: 90 × 90 m, 30 × 30 m, and
10 × 10 m. Also compare with the rates in a)

c) A single producer is placed at (985 m,905 m). Compare the pro-
duction rate for the three grid call sizes in b).

d) Two producers are placed at (945 m,945 m) and (945 m,1035 m).
Increase the maximum injection rate to 300 m3/d and compare
the production rate for the three grid cell sizes in b).

e) Comment on the results from a)–d), and draw conclusions.

Notes:
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• An input file, CENTER90.DATA, for the 90 × 90 m case in a) is
provided in the repository mentioned in Section 2.5.

• A python script, centerplot.py, for plotting results in a) can also
be found in the repository.

• Running OPM-Flow with default settings will produce some ar-
tifacts at early times, both for production and pressure profiles.
Run flow as:
flow CENTER90.DATA --tolerance-mb=1e-10

--initial-time-step-in-days=0.01

The last option is to get some short initial time steps for plotting
on the coarsest grids.

• Optional: Run OPM-Flow as
flow CENTER90.DATA

investigate the pressure field in ResInsight and identify the arti-
facts





7
Grids in reservoir simulation

Agricultural commodities are intrinsically
renewable, whereas nonagricultural
commodities intrinsically depletable. (. . . )
The revenues from agricultural
commodities are therefore predominantly
a return on past investment and current
work. In contrast, minerals are valuable
over-and-above the investment and work
needed to extract them. Agricultural
commodities, in short, are less subject to
plunder than are minerals.

Paul Collier - The plundered planet

In this chapter we will define grids and their constituents. Fur-
ther, we will extend the presented one-dimensional discretisation
of flow equations to more complex grids than the regular grids we
have looked at in the previous chapters. In particular, we will intro-
duce finite volume methods which is the fundamental discretisation in
most reservoir simulation codes.

7.1 Grid

A grid (or a mesh) is a division of a geometric domain into (simple) Grid

subobjects, and is a common technique for numerical methods in
many sciences. In our case the geometric domain is the reservoir.
The subobjects are defined as cells. It is also common to call the Grid cells

grid cells for control volumes, as conservation laws can be applied to
these discrete volumes which are covering the geometric domain.
Another term on common use is grid blocks.

Grid generation is the initial step for numerical modeling. We
have already seen an example of a grid of a spatial geometry
when we discretized a one-dimensional model as a pseudo two-
dimensional grid as depicted in Fig. 4.9. A grid might refer to a
discretization of the space consisting of both the time and spatial
domain, as visualized for the aforementioned one-dimensional
model in Fig. 4.8. However, in reservoir simulation a grid usually
refer to the spatial domain only. In reservoir simulation we thus use
grids to refer to the tessellation of the geometric domain consiting
of the subsurface reservoir. The simulation progresses through time
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in steps, and the time step lengths are determined based on the dy-
namic state of the simulation and not set in advance on a time-grid.

The main geological features of a reservoir are vertical changes See Sec. 8.2 for a more throughout
discussion on geological features and
the framework model.

in lithology (rock types), which gives rise to horizontal surfaces,
and faults, which give rise to vertical (or inclined) surfaces (see
Fig. 8.2). These two main geological features guide the division of
the reservoir into grid cells. Additionally we have finer structures
that may or may not be resolved, such a horizontal changes in
rock properties, e.g., channels with different properties than the
surrounding background material.

There is usually a small part of a larger connected porous
medium that is of primary interest for our simulations. For hy-
drocarbon reservoirs we are mostly interested in the part containing
hydrocarbons, but this part is interconnected with a much larger
porous medium, including the aquifer below where the hydro-
carbons have migrated upwards into the trap which is our cur-
rent reservoir. While the hydrocarbon filled porous medium is of
primary interest, part of the aquifer is commonly also included
into the grid for better handling of the boundary conditions. This
aquifer can be very large in comparison with the hydrocarbon
reservoir, so representing the full aquifer with the same degree of
accuracy as the hydrocarbon reservoir would therefore be compu-
tationally heavy. As the flow in the aquifer is single phase and the
driving mechanism is fluid expansion due to pressure depletion
(or, when water injection increases the pressure of the reservoir,
fluid compression due to pressure increase), the flow process in
the aquifer is simple compared to the reservoir. The major part of
the aquifer can therefore be represented by boundary conditions
without significantly deterring the accuracy.

There are many types of grids used in reservoir simulation. They
are typically distinguished by the geometry of the individual grid
cells and how these grid cells are interconnected. Regular grids
consisting of cuboid grid cells are the simplest version. We have
already used such simple grids when treating one-dimensional
models earlier. In the next section we will present how to derive
flow equations using finite volume methods for general grid cell
geometries. We will in particular present the two point flux approx-
imation, which is the most common discretization in commercial
codes and what is also used in OPM-Flow. Grids with different ge-
ometries for the individual grid cells will be presented in Sec. 7.5.

7.2 Finite volume methods

Up until now we have worked with one dimensional examples.
For these examples the finite difference methods work well. When
starting to treat more complex grids it is more convenient to use
finite volume methods. Flow is assumed constant during each

time stepIn a finite volume method, time is discretized into time-steps ∆t,
and all flows are assumed piece-wise constant in time, i.e., constant
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during each time step.
As in Eq. (3.30), the fluid mass is given by an integral over the

cell volume as
mi =

∫
Vi

ρϕ dV . (7.1)

Here mi is the fluid mass inside cell i, and Vi is the cell volume. We
denote by ∆mi the change in fluid mass during the time step ∆t.
Note that ∆mi would be the change in fluid mass whether mi is the
fluid mass or total mass inside cell i, as the mass of the solid rock
can be considered constant.

Conservation of mass applied directly to each grid cell, assuming
piece-wise constant rates, gives Finite volume methods are mass

conservative.

∆mi = −∆t
∫

Ai

ρq · n⃗ dA − ∆t ρQwi , (7.2)

where the left hand side is the change of mass inside cell i, Qwi is
the rate of flow from the cell into wells, while the right hand side
integral, which runs over the bounding area of the cell, is the net
mass flow rate out of the cell into adjacent cells. As before, and n⃗ is
the outward pointing unit normal on the surface.

Let the vector j = ρq denote the mass flux density (mass flow per
area). The integral in Eq. (7.2) can be split into a sum over the cell
faces (see Fig. 7.1):

∆mi
∆t

= −∑
j

Jij − ρQwi , (7.3)

where Jij is the mass flow from cell i to cell j defined as

i j
fij

Figure 7.1: Two cells i and j,
with the face fij between the
two cells indicated by the gray
surface.

Jij =
∫

Aij

j · n⃗ dA =
∫

Aij

ρq · n⃗ dA . (7.4)

Since the mass transport on each side of a surface is just the inverse
of each other, Jij = −Jji, total mass of each component is always
conserved irrespective of how the flux q is discretized. Thus for
finite volume methods no fluids are artificially created or removed
due to discretization errors.

For multiphase flow (and compositional simulations) mass con-
servation, as given by Eq. (7.2), is applied separately for each com-
ponent. We will only treat single phase flow in this chapter. Properties are assumed constant

within a grid cellIn general all properties except pressure are assumed constant
in each grid cell, and fluid properties are calculated assuming ther-
modynamic equilibrium at a pressure equal to the pressure in the
center of the cell. The integral Eq. (7.1) is approximated by Cells are assumed to be in thermody-

namic equilibrium.
mi = ρEOS(pi) ϕi(pi)Vi , (7.5)

where Vi is the volume of grid cell i, pi is the pressure at the center
of the grid cell, and ρEOS(pi) is the fluid density determined by an
equation of state. Equation of state

Each grid cell is assigned a single value for (reference) porosity,
ϕ0i, and formation (rock) compressibility, cϕi, so that

ϕi(pi) = ϕ0i exp
(
cϕ(pi − pr)

)
≈ ϕ0i

(
1 + cϕi(pi − pr)

)
, (7.6)
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where pr is a reference pressure. A similar model is usually also
applied for the density of water

ρEOS(p) = ρw(p) = ρw0 (1 + cw(p − pr)) , (7.7)

where ρw is the density of water and cw is the compressibility of
water. When using the CO2STORE keyword in OPM-Flow for CO2

sequestration, both the CO2 phase density and the water phase den-
sity are calculated from the cell pressure, the amount of dissolved
components, and the temperature. For hydrocarbon reservoirs we
typically do not include temperature in our simulations. In the
black oil model (see Section 10.2) the density for hydrocarbons is
given by tabulated values for the formation volume factors for oil
Bo and gas Bg depending on pressure only:

ρEOS(p) = ρp(p) =
ρps

Bp(p)
, (7.8)

where the subscript p represents either oil o or gas g.

7.2.1 The two point flux approximation

We will discretize the flux over the cell boundaries by finite dif-
ferences. In this case the finite volume method is often referred to
as conservative finite difference method or simply finite difference
method. When using finite difference methods to discretize the flux
over the boundaries, the two methods are so related that they can
easily be confused. In particular, for Cartesian grids the finite vol-
ume method reduces to the finite difference method when one use
finite differences to discretize the flux over the boundaries. In the
petroleum literature the distinction is sometimes not clarified, while
sometimes the finite volume methods are called finite difference
control volume methods, e.g., in (Aziz, 1993; Ertekin et al., 2001;
Abou-Kassem et al., 2006). We will stick with the common name in
mathematics and physics, namely finite volume, when we want to
highlight the distinction.

In general, the permeability is not isotropic and can not be rep-
resented by a scalar. Typically permeability is lower in the direc- Visit Sec. 3.2.2 for a more in-depth

discussion on permeability and the
Darcy equation.

tion orthogonal to the bedding (vertical permeability) than in the
parallel directions (horizontal permeability), and is sometimes rep-
resented by scalar values for the vertical and horizontal directions
only. The permeability is actually a tensor, K, and can be repre-
sented by a 3 × 3 matrix. The matrix will include off-diagonal cross-
terms if the coordinate system is not aligned with the characteristic
directions for permeability (i.e., the eigenvectors of K) An anisotropic permeability field K

is represented by a symmetric 3 × 3
matrix

K =

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

 . (7.9)

Recall from Sec. 3.2.2 that the permeability tensor is symmetric, i.e.,
kij = k ji.
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According to Darcy’s equation, Eq. (3.24), we can express the
mass flux as

j⃗ = ρ⃗q = − ρ

µ
K · ∇p , (7.10)

which, when substituted in (7.4), gives

Jij = −
∫

Aij

ρ

µ
(K · ∇p) · n⃗ dA . (7.11)

In the two point flux approximation we have

Jij = −λTij
(

pj − pi
)
= λTij

(
pi − pj

)
, (7.12)

where λ = ρ/µ is the mobility1, and Tij is the transmissibility. 1 For multiphase flow the mobility
also include relative permeability. The
mobility is usually evaluated in the
upstream block. Mobility weighting is
discussed in detail in Chap. 10

Mobility is a fluid property, while transmissibility is a function of
permeability and grid geometry.

The transmissibility is found by applying a finite difference
approximation to the pressure gradient. It would be tempting to
use a centered difference coefficient

∂p
∂x

≃ pj − pi

d⃗ij · x̂
, (7.13)

where d⃗ij is the vector between cell centers, and x̂ is the unit vec-
tor in the x direction. Unfortunately, this is not consistent with a
different permeability between the grid cells. We will instead ap-
proximate the gradient on each side of the interface. We then have
one equation for each side of the interface, given as

px ≃ pi +

(
∂p
∂x

)
i
d⃗ix · x̂ +

(
∂p
∂y

)
i
d⃗ix · ŷ +

(
∂p
∂z

)
i
d⃗ix · ẑ

px ≃ pj +

(
∂p
∂x

)
j
d⃗jx · x̂ +

(
∂p
∂y

)
j
d⃗jx · ŷ +

(
∂p
∂z

)
j
d⃗jx · ẑ

, (7.14)

where d⃗ix is the vector from grid center i to the center of the inter-
face, equivalently, d⃗jx is the vector from grid center y to the center
of the interface, while px is the pressure at the center of the inter-
face as shown in Fig. 7.2. If we use a local coordinate system in

pi
pj

px

d⃗ix d⃗jx

n⃗ij
Figure 7.2: Definition of points
and vectors used in the two
point flux approximation. The
flux from cell i (left) to cell j
(right) through the common
face (in blue) is proportional
to the pressure difference
(pi − pj). Note that n⃗ji = −n⃗ij.each block where the local cell direction x̂i is parallel to d⃗ix, i.e.,

x̂i = d⃗ix/
∣∣∣d⃗ix

∣∣∣, then d⃗ix · ŷi = 0 = d⃗ix · ẑi. Thus the two last terms
in the first equation in Eq. (7.14) become zero (equivalently for the
second equation in Eq. (7.14)), so that(

∂p
∂x

)
i
≃ px − pi

d⃗ix · x̂i(
∂p
∂x

)
j
≃ px − pj

d⃗jx · x̂j

. (7.15)



110 reservoir simulation

As seen from Eq. (7.11), we need an approximation for the vector
Ki · ∇p, where Ki is the permeability tensor in cell i. If the perme-
ability tensor has nonzero off diagonal elements, all elements of
this vector will depend on ∂p/∂y and ∂p/∂z, while Eq. (7.15) gives
us ∂p/∂x only. The off diagonal matrix elements kxy and kxz are
zero if x̂i and x̂j are eigenvectors of the corresponding permeability
tensors Ki and Kj in their respective cells. Equivalently, the off-
diagonal element kxy and kxz are zero if the vector d⃗ix from the grid
cell center to the interface is parallel to a characteristic direction for
permeability. When deriving the two-point flux

approximation, it is assumed that grid
cells are aligned with the characteristic
directions for permeability.

In the following, we will assume that the vector d⃗ix from the grid
cell center to the interface is parallel to a characteristic direction for
permeability, so that we have(

Ki · ∇p
)
· n⃗ij ≃ ki

xx

(
∂p
∂x

)
i
x̂i · n⃗ij + ki

yy

(
∂p
∂y

)
i
ŷi · n⃗ij + ki

zz

(
∂p
∂z

)
i
ẑi · n⃗ij ,

(7.16)
where the subscript i of the derivatives indicate that these are in
the local coordinate system, and ŷi and ẑi are the two orthogonal
directions in the local coordinate system. In general, we need to
include the two last terms in this equation. However, for most grids
the values of ŷi · n⃗ij and ẑi · n⃗ij are small. To simplify our notation,
we will therefore omit them in the following, i.e., we assume that
ŷi and ẑi are orthogonal to the normal vector n⃗ij. If we assume that
the pressure gradient is constant on the interface, we can apply
Eq. (7.15) and Eq. (7.16) to the integral Eq. (7.11) to get

Jij ≃ −
(

ρ

µ

)
w

ki
xx
(px − pi) d⃗ix · a⃗ij

|dix|2

Jji ≃ −
(

ρ

µ

)
w

kj
xx

(
px − pj

)
d⃗jx · a⃗ji∣∣djx
∣∣2

, (7.17)

where the subscript w indicates a weighting of the mobility ρ/µ for
the two grid cells (see Chap. 10 for more details), while

a⃗ij =
∫

Aij

n⃗ij dA , (7.18)

that is the interface area as a vector. Note that a⃗ij = n⃗ij
∣∣Aij

∣∣ for
planar surfaces Aij.

We can express Eq. (7.17) in terms of cell–to–face transmissimili-
ties Cell–to–face transmissimilities

Tix = ki
xx

d⃗ix · a⃗ij

d⃗ix · d⃗ix

Tjx = kj
xx

d⃗jx · a⃗ij

d⃗jx · d⃗jx

, (7.19)

to get the following simplified equations:

Jij ≃ −λTix (px − pi)

Jji ≃ −λTjx
(

px − pj
) , (7.20)
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where λ = (ρ/µ)w is the mobility term. Using the second equation
above we can find an expression for the unknown px as

px = pj −
Jji

λTjx
= pj +

Jij

λTjx
, (7.21)

as Jij = −Jji. Filling this expression for px into the first equation in
Eq. (7.20) we have

Jij = −λTix (px − pi) (7.22)

Jij = −λTix

(
pj − pi +

Jij

λTjx

)
(7.23)

Jij

(
1 +

Tix
Tjx

)
= −λTix

(
pj − pi

)
(7.24)

Jij = −λ
1

1
Tix

+ 1
Tjx

(
pj − pi

)
. (7.25)

Thus, we get two point flux equation Eq. (7.12) with

1
Tij

=
1

Tix
+

1
Tjx

. (7.26)

Inverse transmissibility is analogous to
a resistance in an electrical network

If we interpret inverse transmissibility as a resistance, we see
that the resistance between cell centers i and j is the sum of the
resistance from center i to the common cell face and the restistance
from the face to cell center j. This is in complete analog with an
electric resistor network. For simple cartesian grids with cuboid
grid cells we can alternatively define cell transmissibilites, Tx

i = 1
2 Tix

analogous to Eq. (7.19), by replacing d⃗ix with the cell length 2dix.
We see from Eq. (7.26) that the cell–to-cell transmissibility is the
harmonic average of the cell transmissibilities

1
Tij

=
1
2

(
1

Tx
i
+

1
Tx

j

)
. (7.27)

Cell transmisibilities can however not be defined for general cell
shapes.

7.3 Numerical errors due to the grid

When deriving the two point flux approximation, we made two
assumptions with relation to the grid; that the grid cells are aligned
with the characteristic directions for permeability, and that the lines
joining the grid cell centers are orthogonal to the common faces.
Grids where the lines joining the cell centers are orthogonal to their
respective common cell faces are called orthogonal. An orthogonal
grid where the cells are aligned with the characteristic directions
for the permeability are called K-orthogonal. If the permeability K-orthogonal grid

is isotropic, i.e., we have the same permeability k in all directions,
then any orthogonal grid is K-orthogonal. Fig. 7.3 shows examples
of non-K-orthogonal and K-orthogonal grids for an anisotropic
permeability field.
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Figure 7.3: Illustration of K-
orthogonality. In a reservoir
zone comprising a layered
facies (rock type), the per-
meability is higher parallel
to the layering than orthog-
onal. A grid that does not
follow the layering (left) is not
K-orthogonal.

Errors that are not reduced by refining the grid can be called 0-th
order errors, thus the error is of order O((∆x)0) = O(1) and not
dependent on grid size ∆x. Grids that are not K-orthogonal can
introduce 0-th order errors in the two point flux approximation.

Another grid related error source is the grid orientation effect, Grid orientation effects

which is a numerical artifact that also exist on K-orthogonal grids.
Assume we have two injectors and one producer, as illustrated
in Fig. 7.4. We observe that the length of the discretized path for
the fluids moving parallel to the grid (the blue arrows) equals the
distance between this injector and the producer. In contrast, the
fluids transported from the lower injector to the producer will have
a discretized path that is 2/

√
2 =

√
2 times longer than the distance

between the injector and producer. For this reason, changes in fluid
saturations are propagated faster along grid axes than diagonally.
Thus this error is only an issue for for multiphase flow. The errors
are not reduced by grid refinement, thus they are 0-th order errors.

Figure 7.4: Illustration of flow
paths parallel and diagonal
to the grid. The rectangles
indicates injectors, while the
circle indicate a producer. With
the two-point flux approxi-
mation, the fluid fronts will
move faster parallel to the grid
(indicated by blue arrows) than
diagonally (indicated by red
arrows).

Most simulators include an option for more advanced multi-
point flux approximations. These reduce the errors induced by
non-K-orthogonal grids and the grid orientation effect. In spite of
this, multi-point flux approximations are not commonly used.

7.4 Grids and geology

The subsurface permeability fields can usually be treated as slowly
varying within geological objects2, such as sand bodies, but may

2 See Sec. 8.2 for the defintion of a
geological object. In a properly built
reservoir model, the property fields
within geological objects are slowly
varying after geological upscaling, see
Sec. 8.3

change abruptly across zone boundaries, faults, and between ge-
ological objects. This needs special attention since when we for-
mulate a problem in terms of differential equations it is implicitly
assumed that the underlying fields are slowly varying. Abrupt
changes in material properties typically have to be handled through
interface- or boundary- conditions. The finite volume methods are
however, in part, based on an integral formulation, and the perme-
ability field is assumed to be piecewise constant. The two point
flux approximation is derived assuming a piecewise linear pressure
drop inside the grid cells, and works well as long as abrupt changes
in the permeability are confined to cell boundaries. It is thus prefer- Zone boundaries, faults, and bound-

aries between geological objects,
should define a framework for grid-
ding.

able that zone boundaries, faults, and boundaries between geolog-
ical objects coincide with cell faces. It follows that these geological
features should define a framework for grid generation.

An additional reason for preferring the grids to follow zone
boundaries and faults is that these often are associated with thin
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zones with reduced permeability; known as zone barriers and the
fault damage zone. These features are usually so thin that including
them explicitly would severely decrement numeric stability and
increase the running time of the simulations. The effect of these
small volumes of reduced permeability at grid cell boundaries can
however easily be implemented in the two point flux approximation
by simply adding an extra resistance in series with the cell-to-face
resistances in Eq. (7.26). A further discussion of this, and how the Thin zones of reduced permeability

can be represented as an additional
resistance in series.

effect is represented in many reservoir simulators through transmis-
sibility multipliers, can be found on page 125.

7.5 Common grid types

We will now present the most common grid types used in reservoir
simulation. Note that OPM-Flow only supports cornerpoint grids.

7.5.1 Cornerpoint grid

The cornerpoint (or pillar) grid is a legacy grid format that is sup-
ported by all reservoir simulators, and it is the most widely used
grid type. In many companies corner point grids is the only grid
type used in official models. The grid type is illustrated in Fig. 7.5.

Figure 7.5: A cornerpoint grid
(From https://www.sintef.

no/projectweb/mrst). At the
top of the model we can ob-
serve the horizontal zig-zag
pattern representing a fault.

Grid cells are ordered (labeled) using a regular i, j, k scheme. All
grid cells have 8 corners, but the corners may be collapsed vertically
so that actual grid cells can have between 4 and 8 effective corners.
Cells with 4 corners are totally collapsed with zero volume. All
corners are defined on pillars. The corners of grid cell (i, j, k) lies
on pillars (i − 1, j − 1), (i − 1, j), (i, j − 1), and (i, j). Pillars are
normally not vertical, but normal to the layering, as this gives better
K-orthogonality.

We distinguish between a logical grid, which in essence is only a
way to number cells and corners, but can be thought of as a regular
grid as illustrated in the left figure in Fig. 7.6. In the corner point
grid, logical neighbors do not need to share a common face, and
the height of the grid corners along the pillars could be different
for different grid cells, as illustrated in the right figure in Fig. 7.6.
Each logical corner in the regular i, j, k grid is shared by 8 grid
cells. Different depths for the same logical corner can be used for
representing faults and non-reservoir gaps.

It would seem straight forward to represent 2D fault patterns
by defining pillars along the fault planes. However, the resulting
grids will not be K-orthogonal, so zig-zag faults (see Fig. 7.5) is ac-
tually preferred. Compartment volumes may be severely affected
by this approximation. Well paths close to faults may also need to
be moved in the model so that they penetrate the correct compart-
ments. Complex fault patterns in 3D are impossible to represent
without an additional zig-zag representation in the vertical. Un-
less the faults are completely sealing, the calculation of across fault
communication can in this case at best be characterized as compli-

https://www.sintef.no/projectweb/mrst
https://www.sintef.no/projectweb/mrst
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(i, j, k) (i + 1, j, k)

(i − 1, j, k) (i, j, k) (i + 1, j, k)

(i − 1, j − 1, k) (i, j − 1, k) (i + 1, j − 1, k)

Logical grid

(i, j, k)

(i + 1, j, k)

Pillar (i, j)

Grid corner (i, j, k) with
depth for block (i, j, k)

Grid corner (i, j, k) with
depth for block (i + 1, j, k)

Corner point grid

Figure 7.6: A constant j-slice
through a corner point grid
(right), and its corresponding
logical grid seen from above
(left). Black circles are cell
centers, and red circles are
grid corners. The (i, j)-pillar
is shown in blue. The corner
point grid have cells which
are logical neighbors, but have
different depths for the same
logical corners.

cated.
Cornerpoint grids can not be adjusted to well paths. As a result,

it is in most cases impossible to get accurate reservoir–well cou-
plings with this grid type. This problem is discussed in more detail
in Sec. 8.7.

7.5.2 2D Voronoi grid

Voronoi grids have grid-cells with varying number of corners. Sim-
ilar to the cornerpoint grids, the corners are defined on pillars. The
term 2.5D PEBI grid is often used for this grid type, which is a gen-
eralization of the cornerpoint grid where the pillar pattern have
general shapes while maintaining horizontal K-orthogonality.

0 1 2

0.0

0.5

1.0

1.5

2.0

2.5 Figure 7.7: Example of a 2D
Voronoi grid. The blue points
are the cell centers (seeds),
given as input. The lines di-
vide the 2D space into sets of
points closest to each of the
cell centers. The orange points
would be the positions of the
pillars in the 3D grid.

A Voronoi construction builds grid cells starting from grid cell Voronoi construction

centers. This is similar to the point-centered grids presented in
Sec. 4.4. Let {ci} be a set of grid cell centers. The (two-dimensional)
space is then divided into regions Vi defined by the closest cell
center ci:

Vi =
{

x ∈ R2 | ∥x − ci∥ <
∥∥x − cj

∥∥ ∀j ̸= i
}

. (7.28)
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Separation of the plane R2 by this method is indicated in Fig. 7.7.
As a direct consequence of the Voronoi construction, for all points
inside a grid cell the cell center of this grid cell is the closest cell
center, as seen in Fig. 7.7. Furthermore, the cell edges are midway
between the respective cell centers.

A Voronoi tessellation is called regular if all grid vertices con-
nect exactly three grid edges. The Voronoi tessellation in Fig. 7.7
is regular. A regular Voronoi tessellation has a one-to-one map to
a Delaunay triangulation, where the triangles are constructed by A Delaunay triangulation is a triangu-

lation where the circumcircle of any
triangle only contains the vertices of
that given triangle.

connecting the three cell centers around the different grid edges in
the Voronoi tessellation.

For Voronoi grids, the Voronoi construction is used for the pillar
pattern. The pillar position for a 2D cross-section is indicated by
the orange points in Fig. 7.7. This grid construction guarantees
K-orthogonality if the permeability is horizontally isotropic.

The major strength of this grid type is the ability to accurately
represent fault patterns, albeit only in 2D. Further, this grid type
can adjust the grid to straight well paths. Furthermore, the grid
orientation effect (as illustrated in Fig. 7.4) is also minimized if
hexagonal grid cells are used in combination with radial grids
around wells.

Major weak points for this type of grids are the lack of vertical
grid refinements, representation of 3D faults, and that the grid
cannot adapt to complex well paths. Furthermore, the complex grid
structure is computationally hard for linear solvers.

7.5.3 Unstructured grids

As indicated by the name, unstructered grids may have any shape
grid-cells, but they are often built using a 3D Voronoi construction.
The obvious strength of this grid type is the ability to accurately
represent reservoir compartments, as for instance defined by com-
plex fault patterns, in 3D. Even more important, as well design
becomes increasingly complex, unstructured grids can easily be
adjusted to even the most complex well path.

Major weak points for unstructured grids are a complex descrip-
tion of cell properties from the underlying geo-models, the unstruc-
tured grids are missing K-orthogonality (if not accounted for in the
Voronoi definition), and as with the 2D Voronoi grids they can be
computationally challenging for the linear solvers.

7.5.4 Local grid refinements

As indicated by the von Neumann stability analysis, see Sec. 5.3,
the accuracy of our simulations are linked to grid size. As changes
in pressure and saturation are most rapid close to wells, increas-
ing the grid resolution around wells would increase the stability
and accuracy of our simulations. Examples of local grid refine-
ments around wells are illustrated in Fig. 7.8. In addition to grid
refinement using the same grid type, also radial grid refinements
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are common, as seen in the right grid in Fig. 7.8. As the fluid flow
around a well is close to radial, the radial grid refinements better
captures the flow directions.

Most reservoir simulators have capabilities for handling local
grid refinements3. There are two main options for how to numer- 3 Note that the current version of

OPM-Flow (2021-04) does not support
local grid refinements.

ically handle grid refinements: The remainder of the original grid
and the refined part of the grid can be solved independently, with
boundary conditions between the two grids being updated at each
time step. Alternatively, both grids can be solved simultaneously.
The benefit of solving the flow equations independently is compu-
tational efficiency, e.g., different time step size for the two grids.
The drawback is that the boundary conditions between the two
grids could lead to unstability and convergence problems.

While it is possible to refine grids by simply dividing the grid
cells into smaller cells and inherit the cell properties from the orig-
inal coarser grid cells, grid refinements should preferably be re-
sampled on the geo-model to ensure correct up-scaling. In cases
with large geological heterogeneity on several scales one should
consider building separate fine scale geo-models in the near-well
region.

Figure 7.8: Examples of local
grid refinements around wells.
The wells are indicated by a
black filled circle.

7.6 Index ordering and preconditioning

1 2 3 i − 1 i i + 1 n − 2 n − 1 n

Figure 7.9: Indexing of grid
cells in the pseudo-1D slab.

In this section we will briefly present how the ordering of grid
cells gives different matrices in the implicit method. Let us start by
returning to the one-dimensional grid, as given by Fig. 7.9. From One-dimensional grid

Eq. (5.27), we saw that the implicit method for this grid could be
written on matrix form as

AP⃗t+∆t = P⃗t + e⃗ , (7.29)

where the unknowns are the pressures at time-step t + ∆t, i.e. the
vector P⃗t+∆t. This matrix form then represents n-equations of the
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form
aiPi−1 + biPi + ciPi+1 = di , (7.30)

where by convention we have dropped the t + ∆t superscript. Com-
paring to Eq. (5.26), we see that ai = −α, bi = 2α + 1 and ci = −α,
where α = η∆t/∆x2, except for the boundaries. Thus the matrix is
of form

A =



b1 c1 0 0 · · · 0 0 0
a2 b2 c2 0 · · · 0 0 0
0 a3 b3 c3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · bn−2 cn−2 0
0 0 0 0 · · · an−1 bn−1 cn−1

0 0 0 0 · · · 0 an bn


. (7.31)

As seen, the matrix is given by a compact band of non-zero ele-
ments around the diagonal. The compact band consist of three di-
agonal strips, represented by the ai, bi and ci elements respectively.
Such a compact diagonal sparse matrix can be inverted effectively.

(1, 1) (2, 1)

(1, 2) (2, 2)

(i − 1, 1) (i, 1) (i + 1, 1) (n − 1, 1) (n, 1)

(i − 1,
j − 1) (i, j − 1) (i + 1,

j − 1)

(i − 1, j) (i, j) (i + 1, j)

(i − 1,
j + 1) (i, j + 1) (i + 1,

j + 1)

(n − 1,
m − 1)

(n, m −
1)

(n − 1,
m)

(n, m)

Figure 7.10: Indexing of grid
cells in a two-dimensional grid.

Let us now consider a two-dimensional grid, as illustrated in Two-dimensional grid

Fig. 7.10. Here we represent the grid cells by a two-tuple (i, j).
When we want to solve the implicit case, and therefore want our
system of equations written in matrix form, we need to write the
pressures as a vector. A vector is by definition one dimensional. We
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thus need to represent all the cells in the two-dimensional grid by
a one-dimensional vector. There are many possibilities for the map
from two dimensions to one dimension, and which map is used
will affect how easy it is to solve the system. We will return to this
soon.

For now we stay with the two-dimensional representation given
by the two-tuples (i, j). We then get pressure equations on the form

ei,jPi,j−1 + ai,jPi−1,j + bi,jPi,j + ci,jPi+1.j + fi,jPi,j+1 = di,j . (7.32)

This will again result in a matrix where the elements of bi,j are on
the diagonal, with ai,j and ci,j on each side of the diagonal. Also
ei,j and fi,j will be aligned diagonally, however the distance from
the central diagonal will depend on the size of the grid, as we will
illustrate in the following.

For a specific example, consider a 3 × 4-sized grid, where we
order the indices as indicated in Fig. 7.11. This will give a matrix as

A3,4 =



b1 c1 0 f1 0 0 0 0 0 0 0 0
a2 b2 c2 0 f2 0 0 0 0 0 0 0
0 a3 b3 0 0 f3 0 0 0 0 0 0
e4 0 0 b4 c4 0 f4 0 0 0 0 0
0 e5 0 a5 b5 c5 0 f5 0 0 0 0
0 0 e6 0 a6 b6 0 0 f6 0 0 0
0 0 0 e7 0 0 b7 c7 0 f7 0 0
0 0 0 0 e8 0 a8 b8 c8 0 f8 0
0 0 0 0 0 e9 0 a9 b9 0 0 f9

0 0 0 0 0 0 e10 0 0 b10 c10 0
0 0 0 0 0 0 0 e11 0 a11 b11 c11

0 0 0 0 0 0 0 0 e12 0 a12 b12



.

(7.33)

1 2 3

4 5 6

7 8 9

10 11 12

Figure 7.11: Indices of grid
cells in a 3 × 4 sized grid.

Here we see that the central diagonal and its two neighbors
are similar to the one-dimensional case: For each row in the grid
you get a corresponding part on the diagonal that is organized
just as the matrix we obtained for the one-dimensional case. In
addition to these central one-dimensional replicas, you have two
diagonal strips further out representing the grid cells neighbors in
the vertical direction in the grid.

Let us order the same 3 × 4-sized grid in the other direction,
starting with the longest axis first. Then the indices will be as indi-
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cated in Fig. 7.12. This will give a matrix as

A4,3 =



b1 c1 0 0 f1 0 0 0 0 0 0 0
a2 b2 c2 0 0 f2 0 0 0 0 0 0
0 a3 b3 c3 0 0 f3 0 0 0 0 0
0 0 a4 b4 0 0 0 f4 0 0 0 0
e5 0 0 0 b5 c5 0 0 f5 0 0 0
0 e6 0 0 a6 b6 c6 0 0 f6 0 0
0 0 e7 0 0 a7 b7 c7 0 0 f7 0
0 0 0 e8 0 0 a8 b8 0 0 0 f8

0 0 0 0 e9 0 0 0 b9 c9 0 0
0 0 0 0 0 e10 0 0 a10 b10 c10 0
0 0 0 0 0 0 e11 0 0 a11 b11 c11

0 0 0 0 0 0 0 e12 0 0 a12 b12



.

(7.34)

1 5 9

2 6 10

3 7 11

4 8 12

Figure 7.12: Indices when or-
dered with the longest axis
first in a 3 × 4 sized grid.

We observe that the matrix A3,4 has its non-zero elements in a
narrower band than the matrix A4,3. If you solve these two matrices
by Gaussian elimination, you will need fewer operations for the
matrix with a narrower band. Thus, it is then computationally
easier to solve A3,4 than A4,3.

Observe that we have the same elements in the two matrices A3,4

than A4,3 (the names are not the same though). Assume we can
obtain one matrix from the other by linear transformations, which
we can obtain by multiplying by another matrix P:

PA4,3 = A3,4 . (7.35)

Thus, when we have the matrix form of our implicit equation as

AP⃗t+∆t = P⃗t + e⃗ , (7.36)

there might exist a matrix P so that PA is easier to solve. We then
solve the equivalent system

PAP⃗t+∆t = P
(

P⃗t + e⃗
)

. (7.37)

Such a matrix P that makes the system easier to solve is called
preconditioner. Preconditioner

Similar effects as discussed above also holds for sparse matrix
solvers; matrices with a narrower band of non-zero elements are
easier to solve. Thus you want to organize your indices so that they
give non-zero elements as close to the main diagonal as possible.
This means that in general you should start indexing in the shortest
direction first, and the subsequently longer directions. However,
there are other indexing strategies that might yield even narrower
bands. You might further ease your numerical solution by multiply-
ing your system by a preconditioner.

Development of preconditioner matrices is a scientific subject
still under rapid development, and new procedures for precondi-
tioning systems are still added to software for reservoir simulation.
The Constraint Pressure Residual (CPR) preconditioner, as formu-
lated in (Scheichl et al., 2003), was recently added to OPM-Flow. The
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CPR preconditioner can be invoked using a keyword, while default
is a LU-factorization (Rasmussen et al., 2021).

7.7 Exercises

Exercise 7.1 Derive the matrix for a three dimensional grid, e.g. a
grid of dimensions 3 × 3 × 3. How many non-zero diagonal strips
do you get in the matrix?

Exercise 7.2 The checkerboard ordering, or A3 ordering, order the
cells in a grid by always skipping one cell. An example for the 3 × 4
grid is shown in Fig. 7.13. Indicate all the non-zero elements in the
associated matrix.

1 7 2

8 3 9

4 10 5

11 6 12

Figure 7.13: A3 ordering of
grid cells in a 3 × 4 sized grid.
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Building a reservoir model

Every oil-pool in the world was different –
each one a riddle, with colossal prizes for
the men who could guess it! (. . . ) He had
felt the temptation of grandeur, and knew
what it must be to a boy. It was pleasant
to have a lot of money; but you must set
up a skeleton at the feast, and while you
quaffed the wine of success, you must
hear a voice behind you whispering,
“Memento mori!”

Upton Sinclair, Oil!

In this chapter we will present the main concepts of reservoir mod-
els and reservoir model building. The goal is to summarize what is
needed for a reservoir engineer to communicate effectively within
a multidisciplinary reservoir modeling group. For a more complete
exposition we will recommend the book on reservoir modeling by
Philip Ringrose and Mark Bentley.1 1 "Reservoir Model Design A Practi-

tioner’s Guide" (Ringrose and Bentley,
2015)

Note that the perspectives in this chapter are undoubtedly col-
ored by the fact that the authors have mainly worked with offshore
fields in the Norwegian Sea and the North Sea.

The main purpose of building a reservoir model is to capture
information of the subsurface in a form that is suitable for making
quantitative statements about the reservoir and reservoir behavior.
The model is based on available subsurface information, such as
seismic, well logs, core material, observed fluid contacts, and so on,
all with associated uncertainties. The model predictions serve as a
basis for managerial decisions, e.g. development plans, well place-
ment targets, optimization of recovery etc. This overall purpose is
illustrated in the simple flowchart in Fig. 8.1.

In the context of reservoir simulation, that is the simulation of
reservoir fluid flow, the model must contain geological, and other
sub-surface, knowledge in a form suitable for creating reservoir
simulation model realizations. These realizations are specific reser- Reservoir simulation model realization

voir simulator input data that, when run through the simulator,
reproduce the behavior of a possible reservoir. Note that since the
present text is a book on reservoir simulation, the term “reservoir
simulation model”, and often even “reservoir model”, is used many
places instead of the more correct, but more cumbersome, "reservoir
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Subsurface
information:
Geology and
its structure
Fluids and

their properties
Uncertainty

The model

Outcome:
Reserves
Recovery

Economics
. . .

Proposed
actions:

Production
strategy

Well placements
. . .

Figure 8.1: Flow chart illus-
trating the overall purpose of
reservoir modeling.

simulation model realization”. This usage is consistent with many
other text on the subject, but in the general reservoir modeling con-
text it is important to maintain the distinction between “the model”,
which represent all reservoirs that are consistent with our sub-
surface knowledge, and a “model realization”, which represents a
single of these possible reservoirs.

From the introduction we remember that the main model clas-
sification is static and dynamic models. The reservoir model has a
static model that comprise the geological features that do not change Static model

during production, and a dynamic model which contain the addi- Dynamic model

tional features needed for simulating fluid flow during produc-
tion. Note that when we say that a static model do not change, that
need not be entirely true, e.g., the pore volume could be allowed to
change due to compaction.

The static model has a framework model, which describes faults Framework model

and horizons, an object model, that describes the spatial distribution Object model

of geological objects, and a property model, describing the spatial Property model

distribution of properties. In addition, the static model will con-
tain a model for initial fluid-contacts. This contact model needs to be Contact model

consistent with the model for fault seal and compartment commu-
nication. In order to be able to calculate initial in place hydrocarbon
volumes, the static model must also have a model for capillary
pressure and a, possibly simplified, fluid model. The fluid model,
and models for capillary pressure and relative permeability are,
however, normally viewed as being part of the dynamic model.

The dynamic model contains a fluid model, which describes the Fluid model

properties of the reservoir fluids, and their spatial distribution
(pVT regions). A model for relative permeability and capillary
pressure functions, including the spatial distribution of rock-types
(saturation-function regions, keyword SATNUM in OPM-Flow), is also
needed. The coupling between the reservoir and the wells, and
the flow in the wells, is described in the well model, and in order to Well model

correctly predict production from a reservoir with multiple wells,
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the production strategy must be described in a robust fashion that Production strategy

can be understood by the reservoir simulator.

8.1 Framework model and compartment communication

The framework model is built with two main goals: to define a set
of (non)communicating compartments, and to define a reasonable
zonation for geological modeling (the object model). It consists of
the main faults and zone boundaries, as shown in Fig. 8.2. Often

Figure 8.2: The framework
model contain the faults (left)
and one zone boundary (right)
of the Norne model.

the term “structural model” is used as an alternate name for the
framework model. The main data source is seismic, while well
observations of faults and zone boundaries are used for anchoring
seismic data (in the “time” domain) in space.

The seismic interpretation (Fig. 8.3), which is a representation Seismic interpretation ̸=
Framework modelof faults and horizons, is not to be confused with the framework

model. It is, however, the starting point for building the framework
model. For reservoir modeling purposes it is important to note that

Figure 8.3: Seismic with in-
terpreted horizons and faults.
http://www.enageo.com/

seismic_interpretation.html

seismic data has poor vertical resolution and the data quality de-
grades near faults. Faults with throw ≤ 10m (at best) are invisible
on seismic, but can be very important for reservoir flow, even dis-
placing complete zones. If the interpretation is performed in the

http://www.enageo.com/seismic_interpretation.html
http://www.enageo.com/seismic_interpretation.html
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“time” domain, then depth conversion will also introduce artifacts.
Most modern model work-flows demand that the framework model
is consistent and “water tight”, i.e. that it divides space into a num-
ber of separate unfaulted blocks. A seismic interpretation, and in-
deed nature itself, usually does not adhere to this restriction. Note
that faults are also often only interpreted where the data quality is
sufficient, which leaves artificial “holes” close to fault intersections
where data quality is degraded.

Note also that the seismic reflectors (horizons) represent sharp
changes in seismic properties, such as the speed of sound, and this
does not necessarily coincide with the zone boundaries that are
needed in reservoir models. As a general rule there are also more
zone boundaries than reflectors, and the location of additional zone
boundaries and vertical barriers are found on well-logs.

When it comes to zonation, a framework model can be built
based on one of two alternative philosophies: chrono-stratigraphy
or litho-stratigraphy. The two approaches are illustrated in Fig. 8.4.

Figure 8.4: Chrono-
stratigraphy (top), with zone
boundaries defined by geo-
logical time (solid lines), vs.
litho-stratigraphy (bottom),
where zone boundaries are de-
fined at rock-type boundaries.

In a litho-stratigraphic model, the zones are defined based on the
rock types (lithography), while in a chrono-stratigraphic model,
the zones are defined by events in geological time, i.e. a layer cor-
responds to a specific time (chronos) of deposition. Very often the
lithographic layering will correspond to the seismic horizons, while
a chrono-stratigraphic model is generally most suitable both for
geological modeling (the object model) and for describing commu-
nication in reservoir simulation models. In practice, the difference
between the two stratigraphic approaches are not always that clear;
Some framework model zone boundaries may be defined based on
lithology, while others are based on chronology. Also, the geologi-
cal events that are associated with chrono-stratigraphic markers are
often associated with lithographic changes. Finally, the lithographic
makeup within a chrono-stratigraphic zone is often constant over
reservoir size distances.

Inter-compartment communication is the 0-th order dynamic Inter-compartment communication

model. In gas reservoirs and high permeable reservoirs a mass-
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balance model with compartments as smallest unit is often suffi-
cient for describing the dynamic behavior of the reservoir. Inter-
compartment communication is also often the largest uncertainty
in the reservoir description. Production data, and well test data, are
the main sources of information for reducing this uncertainty, but
the inter-compartment communication often remain a large contrib-
utor to uncertainty even in fields with a considerable production
history.

The communication between compartments is influenced by the
reduced permeability near zone boundaries and fault planes. The
altered zone is too thin to be represented explicitly in the grid and
is modelled as a plane with characteristic property (See Fig. 8.5)

Figure 8.5: Representing com-
partment communication on a
grid.

β =
k f

L f
, (8.1)

where k f is the permeability, and L f is the thickness, of the altered
zone.

In the two-point flux approximation the communication be-
tween grid-cells is represented as transmissibilities, Tij. In most
simulators, including OPM-Flow, the fault properties are not given
explicitly, but are input as multipliers Mij on the transmissibilities Transmissibility multiplier

T0
ij that are calculated based on grid cell geometry and grid cell

permeabilities
Tij = MijT0

ij . (8.2)

The fault geometry, in particular the reduced contact area between
grid cells, is taken into accont in T0

ij, while the effect of the reduced

permeability in the fault zone is included in the multiplier Mij.2 2 Further information on fault multipli-
ers can be found in (Manzocchi et al.,
1999).

In order to investigate the connection between the fault zone
property βij and the corresponding multiplier, we will consider a
simplified geometry. Let us align the grid cells horizontally and
consider a fault between two grid cells as shown in the upper figure
in Fig. 8.6. We also consider the corresponding grid without the
fault as in the lower figure in Fig. 8.6.

i j

Li Lj

ki k j

T0
ij

i j

L f

k fki k j

Tij

Figure 8.6: Simple represen-
tations of two grid cells with
and without a fault zone in be-
tween. Note that in this figure
the fault zone thickness L f is
artificially large for visualiza-
tion purposes.

The transmissibility is in both cases given by

Tij =
Aij

Li + Lj
ke , (8.3)

where Aij is the area of the common cell face, and ke is the effective
permeability between the cell centers. The effective permeability
without the reduced permeability zone (lower figure 8.6) is

k0
e =

Li + Li
Li
ki
+

Lj
kj

, (8.4)

while the effective permeability including the zone (upper fig-
ure 8.6) is

ke =
Li + Li

Li−
L f
2

ki
+

L f
k f

+
Lj−

L f
2

kj

. (8.5)
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From (8.2)–(8.5) we get

Mij =
ke

k0
e
=

1

1 + L f

1
k f

− 1
2ki

− 1
2kj

Li
ki
+

Lj
kj

(8.6)

In the case of constant grid cell size L and permeability k this is
reduced to

Mij =
1

1 +
L f
L

( k−k f
k f

) ≃ Lβij

Lβij + k
, (8.7)

where the last equality is valid if we treat the fault zone as a plane,
L f ≪ L. We see from (8.7) that transmissibility multipliers are grid
dependent; they vary with grid size through the length L. Under Transmissibility multipliers are grid

dependentgrid refinements where L is reduced, the multipliers Mij must be
reduced accordingly. For small multipliers, that is strongly sealing
faults with βij ≪ k

L , the multiplier is proportional to grid size.
In addition to a reduced permeability, a fault zone and layers

between reservoir zones often have a sealing property known as
capillary seal. Water wet rock with low permeability and porosity Capillary seal

tend to have high water saturations due to capillary pressure. In
many cases the hydrocarbon pressure must also exceed a capillary
entry pressure in order to flow into, and through, the zone. In any
case the permeability of the sealing zone will be phase dependent.
There will typically be a significantly reduced, or even zero, perme-
ability for hydrocarbon, while there will be a possibility for water to
flow.

The transmissibility multipliers described above do not account
for capillary seal. In most cases it is possible to include the effect
by a combination of threshold pressure and directional relative
permeabilities, 3 but in some cases an explicit grid representation 3 See the OPM-Flow manual for details

on threshold pressure and directional
relative permeability. OPM-Flow does
currently (2020-10) not support direc-
tional relative permeabilities.

of the zone may be neded. Since flow through small grid cells often
is associated with numerical problems, it is advisable to make the
zones artificially thick and adjust the properties of the zone and its
neighboring grid cells accordingly.

8.2 Object model

The basis for all reservoir modeling is the conceptual model. The Conceptual model

conceptual model is a mental image of the reservoir shared by
everyone involved, and sketches of reservoir sections are highly
informative and brings clarity to this mental image. Without a com-
mon conceptual model, the professionals from different disciplines
are forced to work in separate “silos” and no real communication
is possible. The main question that is addressed in the conceptual
model is the identification of the fundamental geological reservoir
building blocks. These building blocks are called model elements. Model elements

The conceptual model must also determine the general shape of
these model elements, and how they stack up in space. 4 The selec- 4 In the literature, the term “flow unit”

is sometimes used for model element.
Here we follow the nomenclature of
(Ringrose and Bentley, 2015), this also
avoids confusion with other uses of the
term flow unit.

tion of appropriate model elements is not a job for geologists alone;
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Single- and multi-phase flow properties are very important when
selecting model elements, and there should be a close connection
between model elements and the “rock-types” used for assigning
multi-phase properties in the flow-simulation model (SATNUM re-
gions).

The object model describes the spatial distribution of geological
objects. These objects are associated with the model elements in
the conceptual model. Model elements usually form a hierarchy,
where one element comprise other elements. As an example (See

Figure 8.7: A hierarchy of
model elements

figure 8.7); the reservoir zones and sub-zones are model elements
comprised of various types sands and non-sands, which are also
model elements. In the process of creating model realizations, the
spatial distribution of objects within a zone is often generated by
algorithms in the class of “object modeling”, but it should be noted
that there is no other connection between these algorithms and
the object model. The existence of a geological object model that
comprise geological objects which belong to model elements is
independent of the algorithms used.

8.3 Property model

Each geological object in the object model is filled with property
fields, i.e. they have properties defined everywhere in space inside
the object. The spatial distribution of the property values is deter-
mined by the model element the object belongs to, and conditioned
to available measurements in wells.

When generating model realizations, the properties are repre-
sented on a grid, this implies that the object geometries are also Objects and properties are sampled on

a grid.sampled on a grid. For simulation, properties should be slowly
varying between grid-cells inside each object, and objects should
cover more than a few grid-blocks in each direction. Sadly, the
property variation between neighboring grid-cells that belong to
the same geological object is often too high in many simulation
models used in the industry today. The key for getting this right is
proper understanding of the concept of a representative elementary
volume (REV) for a model element.

Properties such as permeability are scale dependent, and only
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exist in specific scale ranges known as REV scales. This is illus- Representative elementary volume
(REV)trated in Fig. 8.8. The REV concept is probably best explained in

Figure 8.8: The concept of
a representative elementary
volume (REV)

terms of a moving “average”: If we calculate a property for a cer-
tain volume, such as the average porosity inside a cube, and that
property varies slowly on the characteristic length scale for the
volume when the volume is moved around, then the volume is a
representative elementary volume for that property. This procedure
is performed inside a given object corresponding to a model ele-
ment, and determines the REV for that model element. The center
position of the averaging volume can also be kept fixed, while vary-
ing the size, as in Fig. 8.8. In that case, size ranges that show little
dependency on size for the calculated property correspond to REV
scales. Model elements can be defined on any of these scales.

Ideally we should have full separation of scales, defined as Separation of scales

Grid-cell size ≪ REV ≪ Object size ,

in our models. This is, however, often impossible to obtain in prac-
tice, and we will have to contend with approximate separation

Grid-cell size ≈ REV < Object size .

Property fields are usually generated using voxel based geo-
statistics, such as a Gaussian field with a given spatial correlation
structure (or more correctly variogram). With these algorithms it is
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Figure 8.9: A stochastic realiza-
tion from a gaussian random
field with a correlation struc-
ture.
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easy to condition to data from well-logs by keeping values in corre- Data conditioning

sponding voxels fixed at measured values. Due to the scale differ-
ence between the well-log observation and the property REV, this
“hard conditioning” is very often too restrictive. Log-measurements
may sometimes also not correspond to any REV at all, in which
case they cannot be used as direct observations for conditioning.
The alternative “soft conditioning”, where voxel values are not
fixed but have known probability distributions derived from mea-
surements, is usually most correct, but it is surprisingly seldom
used. Note also that permeability is not measured by well logging
tools, and hard conditioning to well-log permeability is thus never
correct.

The properties the simulator sees are porosity, ϕ, permeability,
kv and kh,5 net to gross ratio6, and rock type numbers7. Apart 5 Alternatively often input as kh and kv

kh
6 The use of NTG ̸= 1 is discouraged !!
7 These numbers may be used in
conjunction with endpoint scaling of
relative permeability, in which case
the model also have endpoint values
in each grid-cell. For details see the
OPM-Flow manual.

from ϕ it is actualy often not a good idea to model these directly in
the geological property model. The question of which properties
should be directly simulated by geo-statistical algorithms, and
which should be derived based on functional dependencies, are
tightly tied to the fact that reservoir modeling always involve up-
scaling of properties. In general there are two types of up-scaling
involved; geological up-scaling and grid based up-scaling. For
property modeling it is geological up-scaling that is relevant. Grid
based up-scaling will be discussed separately (page 130).

Geological up-scaling is the process of incorporating measure- Geological up-scaling

ments on smaller scales, and geological knowledge, in order to
obtain model element properties and property correlations. This
includes transforming well-log data, possibly measured on non-
REV scales, so that they can be used for conditioning, and the
up-scaling of multiphase properties, such as relative permeabil-
ity (Chapter 12.4.1).

The main concepts of geological up-scaling is best explained by
going through a simple example: Example of geological up-scaling

Figure 8.10: At small scale
model element comprising a
layered structure of sand and
mud

• At small scales a model element comprise a layered structure of
sand and mud with variable sand fraction, as shown in Fig. 8.10.

• The average porosity, smoothed over 30cm, is available in well-
logs.

• Measurements on core material give
Porosity Permeability (mD)

mud 0.15 1.5
sand 0.31 900.0

We see that the permeability and porosity of the model element
is determined by the sand fraction, s. Thus, it is natural to model
the spatial distribution of sand fraction s using geo-statistics, and
calculate the porosity and permeability based on it. For the simple
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layered system, we have the following expressions (See page 201)

Porosity: ϕ = 0.31 · s + 0.15 · (1 − s)

Horizontal permeability: kh = (900.0 · s + 1.5 · (1 − s))mD

Vertical permeability: kv =
1.5 · 900.0

1.5 · s + 900.0 · (1 − s)
mD

(8.8)

The measured porosity data at the wells are transformed to sand
fraction,

swell =
ϕwell − 0.15

0.16
, (8.9)

and used for conditioning.
As mentioned earlier, the well-log data should usually not be

used directly as “hard” conditioning data. Based on an analysis of
the well data, core material, and the conceptual geological model,
a probability model for the sand fraction on the appropriate REV
scale

p(sREV
conditioning|swell) , (8.10)

should be developed. For geo-statistical modeling, a correct REV
scale variogram must be derived, and conditioning data should be
drawn from (8.10). However, how to infer the probability model
used for geo-statistical modeling is beyond the scope of the present
text.

Grid based up-scaling is the process of transforming properties Grid based up-scaling

Figure 8.11: The concept og
grid based up-scaling. Source:
http://www.epgeology.

com/static-modeling-f39/

how-upscale-permeability-t6045.

html

that are represented on a fine grid into properties on a coarser grid
as shown in Fig. 8.11. Typically there is a need for this up-scaling
when the static model realizations8 are built on a finer scale than 8 A static model is often called geo-

model, and the dynamic model
simulation-model.

what, due to constraints on simulation run-time, can be used for
dynamic simulation. This situation is far from ideal, but is very
common in practice.

Additive properties, such as porosity and saturation, can be
trivially up-scaled using respectively the volume weighted and
pore volume weighted average. A representative up-scaled absolute
permeability can usually be found by solving local flow problems Flow based up-scaling

with suitable boundary conditions. This is called flow based up-
scaling, and is always better than averaging. If the coarse-scale
grid does not follow object boundaries, the coarse grid cells may

http://www.epgeology.com/static-modeling-f39/how-upscale-permeability-t6045.html
http://www.epgeology.com/static-modeling-f39/how-upscale-permeability-t6045.html
http://www.epgeology.com/static-modeling-f39/how-upscale-permeability-t6045.html
http://www.epgeology.com/static-modeling-f39/how-upscale-permeability-t6045.html
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contain regions from several geo-objects. Since rock types, with Assigning rock types to coarse-scale
grid cells is non-trivial.corresponding multiphase properties (relative permeability), are

associated with model elements, the assignment of rock types to
coarse-scale grid cells is problematic in these cases.

8.4 Grids for geomodeling

In most geo-modeling software, the geological object model and
property model is modeled in an unfaulted and uncompacted rectan-
gular coordinate system conventionally known as the simulation The simulation box

box. The simulation box represent the geometry at the time when
the sediments were deposited. In many popular tools, such as Pe-
trel and RMS, the property values in the simulation box are simply
moved to cell values in the actual gridded framework model using
direct ijk-correspondence. This leads to restrictions on the grids
that may be used for geological modeling in these tools. Grid cells
should be as uniform in size and direction as possible, and artifacts
are unavoidable across faults. Alternative and potentially more cor-
rect transformations, such as GeoChron (Moyen, 2005), is used in
some tools.

8.4.1 Geo-grid vs Simulation-grid compatibility

The sampling of properties on the geo-grid onto the simulation grid
is surprisingly often problematic in many software tools. A direct
mother–child correspondence is often preferred to minimize these Mother–child grids

problems. The coarser grid meant for dynamic simulation is con-
sidered the mother grid, while a finer child grid used for geological
modeling is constructed by refining the mother grid. This approach
clearly impose strong limitations on the available grid types. If
the simulation box to real geometry transformations use direct ijk-
correspondence, this, and the need for K-orthogonality, will enforce
almost rectangular cornerpoint grids. With improved algorithms
and software, the mother–child approach with its limitations could
become obsolete.

8.5 Fluid model

The fluid model comprise the fluid model proper, often referred
to as the pVT model, and the fluid–rock model. The pVT model
describe the properties of the reservoir fluids, while the multiphase
transport properties, which depend both on the fluids and the
rock, are described in the fluid–rock model, typically in terms of
saturation functions such as relative permeability.

8.5.1 pVT model

In the context of reservoir engineering, the term pVT-model is
used for the fluid model proper. Note, however, that this should
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be understood as the “thermodynamic model”, since it describes
much more that the relation between pressure (p), volume (V), and
temperature (T). Moreover, the fluid models employed in reser-
voir simulation are mostly isothermal. The pVT model determines
the density, saturation, composition, and viscosity of the different
phases as a function of pressure, total composition, and tempera-
ture.

Two classes of pVT models are most common in reservoir sim-
ulation, “black oil” and “compositional”. The black oil model has Black oil model

three components (water, oil, and gas), that distribute among three
phases (water, oil, and gas). That the components and phases in
the black oil model have identical names is admittedly confusing,
and the components may be more correctly described as surface-
water/oil/gas or produced-water/sales-oil/sales-gas. Invariably
the water-phase contains only the water-component, while the oil-
and gas-phases contain no water component. The oil- and gas-
components split between the oil- and gas-phases dependent on
pressure and total composition, and a black oil pVT- model is input
to a reservoir simulator in the form of tables. Reservoir simulation
with a black oil pVT-model is discussed in detail in chapters 10,
and 11. Most compositional models also have three possible phases Compositional model

(water, oil, and gas), but the number of components may vary and
they are typically connected to actual chemical constituents. In a
compositional model, densities, saturations, phase compositions,
viscosities, and other fluid properties are based on equations of
state or correlations. As a result, these models are computationally
more demanding than the table based black oil model. Composi-
tional models with a large number of components are very heavy in
terms of cpu- and wall-clock- time, and the number of components
in models used in reservoir simulation are usually around 10 or
less.

The data basis for the pVT model is measurements on down-
hole fluid samples or re-combined surface samples. Both black oil
and compositional models are typically based on a compositional
model with a large number of components which is tuned in order
to reproduce these measurements. This is done in specialist pVT
software which is subsequently also used for creating black oil ta-
bles. Compositional models for reservoir simulation have a reduced
number of components, and the selection of the reduced compo-
nent set and the parameters in the reduced model is also generated Component lumping

in the pVT software. This process is called component lumping.
Different recovery methods require separate fluid models. In the

case of primary depletion or water injection, a black oil model is
usually sufficient, while processes which result in larger changes
in reservoir fluid composition, such as miscible gas-injection, will
require a compositional model. Gas condensate reservoirs also
typically require compositional simulation.

The viscosity correlations included in pVT software are good, and Viscosity correlations

the viscosity values generated for Black-Oil tables tend to be of suf-



building a reservoir model 133

ficient accuracy. However, these correlations are computationally
heavy, and compositional simulation usually employ simpler, faster
to evaluate, but less accurate, correlations. Compositional simula-
tion also involves a reduced number of components compared to
the tuned internal correlations in pVT software. As a consequence,
it is important to pay special attention to the tuning of the viscosity
correlations for compositional simulation. Note that some of the
more popular viscosity correlations are unstable outside the param-
eter range used for tuning. The calculated viscosity values should
therefore always be checked.

In reservoir simulators the grid-cell volumes are generally as-
sumed to be in thermodynamic equilibrium, and it is clear that this
assumption is violated if there are fast state changes in the typical
large grid cellss used in full field simulation. Compositional sim-
ulators usually have no available tricks for compensating for this,
while some ad-hoc fixes, such as the Todd–Logstaff approach for
miscible gas displacement and the DRSDT keyword9 allowing gas 9 See OPM-Flow manual

and oil to be not fully equilibrated, exist for black oil.

8.5.2 Saturation functions

The saturation functions, i.e. relative permeability and capillary
pressure, are normally provided in the form of tables, while some
simulators allow for a limited number of parameterized correla-
tions. These tables are then associated with spatial regions using
region numbers which are fields of integers that are assigned to Region numbers

grid cells. In OPM-Flow the corresponding keyword is SATNUM. The
regions are associated with geological model elements. If finer con-
trol is needed, for instance having relative permeability in a model
element a function of permeability or initial saturation, a technique
called end-point scaling is typically available.

The laboratory measurements pertaining to relative permeability
and capillary pressure are called special core analysis (SCAL). It
is well known that saturation functions are highly dependent on
the wetting state of the fluid–rock system, and reproducing the
correct reservoir wetting conditions in core samples is highly non-
trivial. More so since the true reservoir wetting state is uncertain.
Also, only a few core samples are subjected to SCAL. Up-scaling
from core-plug to model-element scale is usually also required.
Thus, relative permeability tend to have a large uncertainty, and Saturation functions are associated

with large uncertaintyis consequently a prime candidate for a tuning parameter when
conditioning the model to production data.

Data for (drainage) capillary pressure is available from
saturation-logs

8.6 Contact model and model initialization

The contact model describes the initial fluid contacts, i.e. the water–
oil and gas–oil contact, in each of the reservoir compartments. The
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initial, pre production, state of the reservoir, that is initial pressures,
compositions, and saturations, are determined by the contact model
and the capillary pressure functions. The different contact regions
are typically given to the simulator in terms of corresponding re-
gion numbers, and in OPM-Flow the relevant keyword is EQLNUM.

In order to establish initial hydrocarbon in place volumes, the
saturations are often calculated on a fine gridded static geo-model.
If detailed consistency in fluid distribution between the static model
realizations and the coarser model realizations used for dynamic
simulation is an issue, grid-based up-scaling of the saturations is
performed. It should however also be noted that geo-modeling
software often have simplified fluid models. Endpoint scaling can
be used to ensure that the dynamic model is in initial gravitational
equilibrium, either by scaling Pc (vertical scaling) or by setting
the critical water saturation Swcr equal to the initial saturation Swi

(horizontal scaling).
Correct initialization of compositional models with near-critical

fluids (condensate reservoirs), where the composition can depend
strongly on depth, requires special attention.

8.7 Well model

The boundary conditions to the reservoir simulation model are
defined in wells. Wells are either controlled by rates or by pressure.
The flow rate from a grid-cell into a well is proportional to the
pressure difference between the well pressure and the grid-cell
pressure. The proportionality constant Ci is called the connection
factor: Connection factor

Qi = Ci
kri(Si)

µ

(
pcell

i − pwell
i

)
. (8.11)

The connection factor is often calculated using the Peaceman
formula (6.11). This formula is derived based on the assumption
that the well is vertical and running through the center of the grid-
cell. Also, interference between neighboring wells is ignored. For
non-vertical wells in cornerpoint grids, real well paths do not go
through cell centers, as illustrated in figure 8.12. The perforation

Figure 8.12: A well path
through a cornerpoint grid.
The grid-cellss indicated by a
red dot are connected to the
well.

length in each grid-cell has to be taken into account when calculat-
ing the connection factors, and normally also the depth difference
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between grid-cell center and the corresponding well perforations is
accounted for in the pressure difference calculation. However, the
inflow from the different perforated grid-cells are interdependent,
and the simple rate-independent connection factor representation
(8.11) cannot fully account for the complex well inflow.

Wells with advanced inflow control equipment, and branched
wells, are even more challenging. In a segmented-well model (Fig-

Figure 8.13: A well equipped
with inflow control devices
(ICDs). In a segmented-well
model both pressure drops in
the ICDs and in the wellbore
segments are accounted for.

ure 8.13) the well is divided into segments. The rate and saturation
dependent pressure drops in each segment is accounted for and
the state and flow in each segment is included in the the overall
simulation model equation system. Special in-well equipment, such
as inflow control devices, is included as separate segments. The
workings of most advanced in-well equipment, and any complex
branching pattern can be accurately modeled with a segmented-
well model. The main weakness in the approach is the use of rate
independent connection factors, which cannot account for the in-
terference between flow in neighboring perforated grid cells. In
the case of branched wells, a grid cell may even be connected to
more than one branch. Custom gridding around the wellbore is
preferred when simulating “smart” or branched wells since the er-
rors introduced by the constant connection factors may invalidate
any conclusions related to the operation of the well.

8.8 Production strategy

When a model is used for predicting future production the produc-
tion strategy must be operationalized in a manner that can be under-
stood by the simulator or by external software that interact with the
simulator. In OPM-Flow this is typically expressed in terms of well
and group controls, and ACTIONX keywords. The operationalized
production strategy must be robust both with respect to numerics
and event combinations.

8.9 Exercises
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Exercise 8.1 In this exercise we will create a set of model realiza-
tions with varying porosity and permeability fields. We will con-
sider a 2D model with 100 × 100 grid cells, and we will create 5
realizations that are assume equally probable.

Create a set of five different porosity realizations from a gaussian
random field. From the porosity values we create a set of perme-
ability values from the simple equation

k(ϕ) = 1010ϕ . (8.12)

You can use a python code similar to the following to create your
porosity field:

from gstools import SRF, Gaussian

fMu = 0.5 #mean value

fVariance = 1 #variance

inn=100 #number of grid cells in one direction

x=y=range(inn)

sModel = Gaussian(dim=2, var=fVariance, len_scale=10)

sSrf = SRF(sModel, seed=1)

aafField=sSrf.structured([x, y])

aafField+=fMu

For the gaussian random field for the porosity values you should
use a correlation length of 10 (grid cells), a variance of 10−3, and
a mean of 0.2. Note that you need to change the seed to get dif-
ferent realizations. From the porosity fields, create corresponding
permeability fields using the functional relationship in Eq. (8.12).

For your OPM-Flow runs you can use the example *.DATA file
provided in the repository. Note that the path to the PORO and
PERMX include-files needs to be updated in the provided *.DATA
file.

https://bitbucket.org/ntnu_petroleum/ressimbook-material/

src/master/flow/Exercise81

Run the five realizations using OPM-Flow. Compare the water
production. Please comment on how the porosity distribution af-
fects the production rates. Do you find any correlation between
average field porosity or average field permeability and steady-state
rates?

https://bitbucket.org/ntnu_petroleum/ressimbook-material/src/master/flow/Exercise81
https://bitbucket.org/ntnu_petroleum/ressimbook-material/src/master/flow/Exercise81


9
Basic theory for two phase flow

Playing with fire tastes much better when
I’m on

Blood Command - Quitters don’t smoke

We will now move from working with a single fluid phase to
start working with multi-phase settings. A large part of managing
sub-surface resources includes multi-phase flow; air and water in
shallow aquifers, brine and CO2 in CO2 sequestration, and a three-
phase system of oil, water and gas in hydrocarbon recovery. To
start off our journey into multi-phase flow we will review the one-
dimensional flow equations for horizontal flow, this time for two
fluids instead of only one. In this two-phase setting we will look at
analytical solutions of pressure and saturation as function of posi-
tion and time. These equations are derived using an extension to
the single phase Darcy equation; relative permeability. We will also
devote a section to numerical diffusion, a non-physical diffusion
that occurs when solving for several phases.

Throughout this chapter the two fluids under consideration are
will have subscripts w and n. These letters can represent different
things; a water phase and non-water phase, a wetting phase and
a non-wetting phase, an aqueous phase and a non-aqueous phase
(sometimes called a non-aqueous phase liquid (NAPL)). The sub-
script n is sometimes also interpreted as naphtha, in the meaning
oil. What is important for us is that we have to immiscible phases,
i.e., two phases that are separated by a fluid-fluid interface.

9.1 Extending mass conservation to two phases

By considering mass conservation, we obtained the following equa-
tion, Eq. (3.35), in Chapter 3:

− ∂

∂x
(ρq) =

∂

∂t
(ϕρ) , (9.1)

here written as a 1D equation. Let sp denote the saturation of
phase i, hence sw is the aqueous phase saturation and sn is the
non-aqueous phase saturation. If we assume that the phases are
immiscible, in the sense that their composition remain constant and Immiscible phases
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there is no exchange of components, we can apply mass conserva-
tion to each phase to obtain

− ∂

∂x
(
ρpqp

)
=

∂

∂t
(
ϕρpsp

)
, (9.2)

where ρp and qp is the density and Darcy velocity of phase p, re-
spectively. Assuming solely two phases, we have sn + sw = 1.

We will now extend the Darcy equation to one equation for each
phase. The extended Darcy equation is written as

Extended Darcy equation

qp = − kkrp

µp

∂pp

∂x
. (9.3)

Here krp is the relative permeability of phase p, and pp is the pressure
in phase p. The phase pressures are linked through the capillary
pressure pc as

pc = pn − pw , (9.4)

where it is a convention to subtract the wetting phase pressure from
the non-wetting phase pressure.

Substituting the extended Darcy equation, Eq. (9.3), into the
continuity equation, we obtain:

Two-phase flow equation
∂

∂x

(
ρp

kkrp

µp

∂pp

∂x

)
=

∂

∂t
(
ρpϕsp

)
. (9.5)

For incompressible fluids we can remove the densities ρp, giving We will consider multi-phase flow of
compressible fluids in Sec. 10.2.the following set of equations:

Incompressible two-phase flow equa-
tions

∂

∂x

(
kkrn

µn

∂pn

∂x

)
=

∂

∂t
(ϕsn)

∂

∂x

(
kkrw

µw

∂pw

∂x

)
=

∂

∂t
(ϕsw) . (9.6)

To solve such a system we need to describe our new parameters,
the relative permeability krp and capillary pressure pc.

9.2 Relative permeability and capillary pressure

For CO2 and water it is typically water that has most adherence to
the rock surface, and is therefore considered the wetting fluid. Also
for water and air systems the water is considered the wetting fluid.
For water, oil and gas systems, water is considered most wetting,
oil intermediate and gas the least wetting fluid. Be aware that the
actual wetting varies throughout the pore space and with fluid and
rock properties. You could have hydrocarbon reservoirs where oil
is more wetting than water. In the following we will consider water
the wetting fluid, if another fluid is actually the wetting fluid, this
will be captured by the capillary pressure and relative permeability.

A process where the wetting fluid is displaced by a non-wetting
fluid is called drainage, while a process where the non-wetting Drainage and imbibition

fluid is displaced by a wetting fluid is called imbibition. Thus,
CO2 injection into an aquifer is a drainage process. Pumping water
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out of a shallow aquifer, so that the water is displaced by air, is
also a drainage process, while a recharging of the aquifer through
precipitation is an imbibition process.

Oil accumulation into a hydrocarbon reservoir starts at a water
saturation of one, and draining the water down to the initial (i.e.,
initial when we start to produce the reservoir) water saturation
is called primary drainage. This primary drainage process takes Primary drainage

place over geological time. As the initial saturation is the result of a
drainage process, the primary drainage capillary pressure curve is
required for initialization the saturation using pressure.

When we start to inject water into and produce oil out of the
reservoir, we are reversing the geological-time drainage process to
a much faster imbibition process. While imbibition is the general
process when producing a reservoir, both drainage and imbibition
can happen simultaneously at different parts of the reservoir, e.g.,
when creating an oil bank due to an enhanced recovery method.
An increase in water saturation during oil production is consid-
ered a secondary drainage process. Modeling both drainage and Secondary drainage

imbibition requires several flow parameter curves for the different
processes, and is therefore significantly more complex than pure
imbibition.

In general we need different relative permeability and capillary
pressure curves for drainage (decreasing wetting saturation) and
imbibition (increasing wetting saturation). Unfortunately, a possible
secondary drainage process might require a third set of curves. In
general you only need the capillary pressure curve for the primary
drainage process, as we seldom model the fluid flow over geolog-
ical time. The two properties relative permeability and capillary
pressure are thus not fully defined by saturation. It can be shown
that the rate of change is also affecting the flow parameter curves.

In this chapter we will however assume that both curves can be
described as a function of saturation only, thus disregarding any
changes between drainage and imbibition curves. This assumption
is fair as long as the saturation changes monotonically and the rates
are in a limited range.

The relative permeability curves are sometimes parameterized to
simplify its description. The most common parameterization is the
(Brooks-)Corey curves (Brooks and Corey, 1964), which is a power
law in the normalized saturation:

Corey functions for relative permeabil-
itykrn(sw) = (1 − swn)

nn

krw(sw) = kn
rwsnw

wn

swn =
sw − swir

1 − swir − snrw

, (9.7)

where swir is the irreducible wetting saturation, while snrw is the
irreducible non-wetting saturation, swn is the normalized water
saturation, kn

rw = krw(snrw) is the wetting relative permeability at
irreducible non-wetting saturation, and nn and nw are the power
law parameters for the non-wetting and wetting (water) case, re-
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spectively.
These functions can be implemented in Python as:

def normSw(fSw,fSwirr,fSnrw):

return (fSw-fSwirr)/(1.0-fSnrw-fSwirr)

def coreyWater(fSw,fNw,fKrwn):

return fKrwn*fSw**fNw

def coreyNAPL(fSw,fNn):

return (1-fSw)**fNn
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Figure 9.1: Corey relative
permeability curves using
nn = 2 = nw.

Common values for the power law parameters are nn = 2 = nw.
If we assume that kn

rw = 0.4 and swir = 0.2 = snrw, then this will give
the relative permeability curves shown in Fig. 9.1.

There exist other parameterization methods, e.g., the LET-
parameters (Lomeland et al., 2005). These have more parameters,
and can thus give more sophisticated shapes. One use of relative
permeability parameterization is in history matching. To obtain
a match one often need the added flexibility given by curves pa-
rameterized by several parameters. One drawback of using curve
shapes described by more parameters is that the curves are then
non-unique with respect to the parameters, i.e., two different set of
parameters can give similar curves. This non-uniqueness can be a
challenge for automation of optimization processes.

Also the capillary pressure curves can be parameterized. One
method is the Skjæveland method (Skjaeveland et al., 1998), were
the imbibition capillary pressure curve is described by the function

pc(sw) =
cw(

sw−swir
1−swir

)aw +
cn(

sn−snrw
1−snrw

)an . (9.8)

This can be implemented in Python as

def skjaevland(fSw,fSwirr,fSnrw,fCw,fAw,fCn,fAn):

return fCw/((fSw-fSwirr)/(1-fSwirr))**fAw+fCn/((1-fSw-fSnrw)

↪→ /(1-fSnrw))**fAn

An example using the parameters aw = 2 = an, cw = 5 ×
10−3 bar, cn = −5 × 10−3 bar, and swir = 0.2 = snrw is shown
Fig. 9.2.
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Figure 9.2: Skjævland cap-
illary pressure curve using
aw = 2 = an, cw = 5 × 10−3 bar
and cn = −5 × 10−3 bar.

Using cn = 0 will give a primary drainage capillary pressure
curve, with pc(sw) > 0 for all saturation values.

We define the fractional flow of the wetting phase (water) fw as
the fraction of wetting phase Darcy velocity qw to the total Darcy
velocity qt = qw + qn (equivalently, the fraction of wetting phase
flow rate to the total flow rate):

fw =
qw

qt
=

qw

qw + qn
=

1
1 + qn

qw

. (9.9)

If we assume that the capillary pressure is zero, so that pn = pw,
then from Eq. (9.3) we have

qn

qw
=

− kkrn
µn

∂pn
∂x

− kkrw
µw

∂pw
∂x

=

krn
µn
krw
µw

=
krnµw

krwµn
. (9.10)
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This gives the factional flow as Fractional flow

fw(sw) =
1

1 + qn(sw)
qw(sw)

=
1

1 + krn(sw)µw
krw(sw)µn

. (9.11)
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Figure 9.3: Fractional flow
curve of the relative per-
meability curves in Fig. 9.1
with µw = 1 × 10−3 Pa s and
µn = 2 × 10−3 Pa s.

Using the same parameters as for the Corey relative perme-
ability curves in Fig. 9.1, and using a wetting phase viscosity of
1 × 10−3 Pa s and oil viscosity of 2 × 10−3 Pa s, we get the fractional
flow curve depicted in Fig. 9.3.

9.3 Buckley–Leverett equation

In this section we will present a solution to the set of two partial
differential equations, Eqs. (9.6), describing incompressible two-
phase flow in a porous medium. This set of equations can not be
solved analytical in general. However, it exists a semi-analytical so-
lution for a one-dimensional system, the Buckley-Leverett equation.

The Buckley-Leverett equation is
named after the paper (Buckley and
Leverett, 1942).

For this solution we need the additional assumptions of incom-
pressible rock and zero capillary pressure.

We will now assume a constant injection rate ql on the left side,
and a constant production rate qr on the right side. If you assume a pseudo-1D slab

of cross-section A, then you need
to assume a constant injection rate
Qp = Aqp.

Given incompressible fluids, our mass balance equation,
Eq. (9.2), can be simplified to

−∂qp

∂x
= ϕ

∂

∂t
(
sp
)

, (9.12)

where the porosity has been moved outside the derivative as the
rock is assumed incompressible. The wetting phase equation can
then be written as

−∂qw

∂x
= ϕ

∂sw

∂t
. (9.13)

Since the fluids are incompressible, we have that the total flow
qt is constant. In particular, the flow rate boundary condition on
the left and right side of the model equals the constant flow rate:
ql = qr = qt. Further, the wetting phase flow is given by qw = qt fw,
where fw is the fractional flow (of the wetting phase). This gives the
Buckley-Leverett equation

Buckley-Leverett equation
−∂ fw

∂x
=

ϕ

qt

∂sw

∂t
. (9.14)

In the following we will find an analytical solution to this equation.
For this end, we start by employing the chain rule to get

−d fw

dsw

∂sw

∂x
=

ϕ

qt

∂sw

∂t
. (9.15)

Expand the partial dsw to

dsw =

(
∂sw

∂x

)
dx +

(
∂sw

∂t

)
dt . (9.16)

At a constant saturation, dsw = 0, we then have The vertical line symbol |sw indicates
that the derivative is at a constant
value of sw.
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∂sw

∂t
= − dx

dt

∣∣∣∣
sw

∂sw

∂x
. (9.17)

We can then eliminate ∂sw/∂t from Eq. (9.15), and get

d fw

dsw
=

ϕ

qt

dx
dt

∣∣∣∣
sw

. (9.18)

Denote the velocity of the constant saturation as usw , then we have

usw =
dx
dt

∣∣∣∣
sw

=
d fw

dsw

qt

ϕ
. (9.19)

Thus, the velocity of a constant saturation is proportional to the
derivative of the fractional flow curve.
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Figure 9.4: The derivative with
respect to sw of the fractional
flow curve in Fig. 9.3.

We will now consider a wetting phase flooding scenario; con-
sider a one dimensional model initially filled with non-wetting
and wetting phases at sw = swir. The wetting phase is injected at
x = 0 with a rate qw(t) According to Eq. (9.19), the coordinate xsw

where the saturation is sw then moves with the velocity usw . The
coordinate xsw for where the saturation is sw is then given by

xsw(t) =
∫ t

0
usw(t

′)dt′ =
W(t)

ϕ

d fw

dsw
, (9.20)

where

W(t) =
∫ t

0
qw(t′) dt′ (9.21)

is the total volume of wetting phase injected.
The derivative of the fractional flow curve shown in Fig. 9.3 is

shown in Fig. 9.4. Using the description of the Corey curves, this
was implemented in Python as

def fractionalFlowCorey(fSw,fNw,fNn,fKrwn,fMuw,fMun):

return 1/(1+(1-fSw)**fNn*fMuw/(fKrwn*fSw**fNw*fMun))

We see from Eq. (9.20) that flipping axis for this curve, as shown
in Fig. 9.5, should give the saturation distribution at a particular
time. However, as we see from the plot, there are two saturation
values for each distance and given time. This is unphysical, at most
one of these saturations represent the true solution.
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Figure 9.5: Getting the satura-
tion profile by changing axis
for the plot in Fig. 9.4.

At high wetting phase saturations, velocity usw decrease with
saturation, thus the saturation profile is spreading with time. This
situation is called a rarefaction wave. On the other hand, at low wet-
ting phase saturation, velocity usw increase with saturation, thus the
higher saturations will overtake the lower forming a self sharpen-
ing shock front. At the front, the saturation has an instant change
from the shock front saturation sw f to the initial saturation, swir.
Behind the front, the saturation is described by Eq. (9.20). The satu-
ration distribution is illustrated in Fig. 9.6. We will derive the front
position, x f , and saturation, sw f , below.

The average saturation behind the front is given by the total
volume of injected wetting phase fluid divided by pore volume, in
addition to the initial wetting fluid:

⟨sw⟩ = swir +
W(t)
ϕx f

= swir +
1

d fw
dsw

∣∣∣
sw f

, (9.22)
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Figure 9.6: Saturation pro-
file for the Buckley–Leverett
problem.

where we have used Eq. (9.20) for the saturation sw f at the shock
front x f . We can also find the average saturation by integrating over
the saturation profile:

⟨sw⟩ =
∫ x f

0 sw dx
x f

. (9.23)

We see from Fig. 9.6 that∫ x f

0
sw dx = x f sw f +

∫ 1−snrw

sw f

W
ϕ

d fw

dsw
dsw

= x f sw f +
W
ϕ

(
1 − fw(sw f )

)
,

(9.24)

where the term x f sw f gives the area of the square outlined by the
black dashed lines in Fig. 9.6, while the integral term gives the area
between the blue curve and the top of the square. Note that this
integral is with respect to the water saturation, so we integrate the
area between the y-axis and the blue curve between the two given
saturation values; the residual non-wetting saturation 1 − snrw and
the shock front saturation sw f . The integral is solved by changing
from integrating on sW to integrating on (d fw/dsw)dsw = d fw.

Filling Eq. (9.24) into Eq. (9.23) gives

⟨sw⟩ = sw f +
1 − fw(sw f )

d fw
dsw

∣∣∣
sw f

. (9.25)

Eliminating ⟨sw⟩ from Eqs. (9.22) and (9.25) gives

d fw

dsw

∣∣∣∣
sw f

=
fw(sw f )

sw f − swir
. (9.26)

Due to the shape of the fractional flow curve, this equation holds
for only one wetting phase saturation sw f , shown by the secant
line in Fig. 9.7. The saturation jump at the shock front is thus con-
stant in time, and, with constant injection rate, the front moves at
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0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0 Figure 9.7: The secant indicat-
ing the shock front saturation
for the one-dimensional two-
phase flow.

a constant speed. The saturation at the shock front is given by the
tangent to the fractional flow curve which cross the point (swir, 0).

To find the shock front saturation, we observe that the line be-
tween (swir, 0) and (sw, fw(sw)) is at is steepest for sw = sw f . The
scipy package has several optimization modules, including a mod-
ule for finding the minimal value. As we want to find the maximal
value of the slope, we use this package on the negative of the slope.
This can be implemented in Python as:

def findFrontSaturation(fSwirr,fSnrw,fNw,fNn,fKrwn,fMuw,fMun):

from scipy import optimize

def tangentFFCorey(fSw):

return -fractionalFlowCorey(normSw(fSw,fSwirr,fSnrw),fNw,

↪→ fNn,fKrwn,fMuw,fMun)/(fSw-fSwirr)

fSwf=optimize.fmin(tangentFFCorey,((1.0-fSnrw)-fSwirr)/2.0)

return fSwf

Here fSwf will be the shock front saturation.
We can then calculate the Buckley-Leverett function as:

def buckleyLeverettSolution(fTime,fSwirr,fSnrw,fNw,fNn,fKrwn,fMuw,

↪→ fMun,fModelLenght,fPoro,fDarcyVelocity):

fSwf=findFrontSaturation(fSwirr,fSnrw,fNw,fNn,fKrwn,fMuw,fMun)

from scipy.misc import derivative

def funcFFCorey(fSw):

return fractionalFlowCorey(normSw(fSw,fSwirr,fSnrw),fNw,

↪→ fNn,fKrwn,fMuw,fMun)

afSw=np.arange(fSwf,1.0-fSnrw,0.001)

afDerivativeFFCorey=derivative(funcFFCorey,afSw,dx=1E-6)

afDerFFDarcyVeloPhi=afDerivativeFFCorey*fDarcyVelocity/fPoro

return afDerFFDarcyVeloPhi*fTime,afSw

This can be plot as follows:

cmap = plt.get_cmap(’gnuplot’)

fTime=0.0

fDeltaT=0.1

fMaxTime=0.5

while(fTime<fMaxTime):
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fTime=fTime+fDeltaT

afDistance,afSw=buckleyLeverettSolution(fTime,fSwirr,fSorw,fNw,

↪→ fNo,fKrwo,fMuw,fMuo,fModelLength,fPoro,fDarcyVelocity)

plt.plot(afDistance,afSw,color=cmap(1-fTime/fMaxTime))

plt.plot([afDistance[0],afDistance[0]],[afSw[0],fSwirr],color=

↪→ cmap(1-fTime/fMaxTime))

plt.plot([afDistance[0],fModelLength],[fSwirr,fSwirr],color=cmap

↪→ (1-fTime/fMaxTime))

plt.xlabel(r’Distance [m]’)

plt.ylabel(r’Saturation $s_w$’)

This code plots as shown in Fig. 9.8.
As seen from the derivation and in the plot, the Buckley-Leverett

equation gives a discontinuous saturation at the wetting phase
front. If we include capillary pressure, then a large saturation
derivative will give large capillary pressure differences. This will
induce flow that will smear out the shock front. As we will see in
the next chapter, also numerical errors will smear out the shock
front.
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Figure 9.8: The Buckley-
Leverett equation for 10 dif-
ferent time steps.

9.4 Numerical diffusion

The analytical Buckley-Leverett solution gives a perfectly sharp
front, as seen in Fig. 9.8. Real life displacements will never give
such a perfect sharp front, both due to mixing and due to capillary
forces the smear out any front. Without any relation this physical
diffusion, also numerical solutions give a smeared out front. It is
this numerical smearing of the front that will be treated in this
section. This phenomena is called numerical diffusion. While the Numerical diffusion

phenomena has nothing to do with actual diffusion in the porous
medium, the numerical methods yield solutions that resembles
the solution of a advection-diffusion equation (also known as the
convection-diffusion equation). In most cases relevant for reservoir
simulation, numerical diffusion is much stronger than the physical
diffusion.
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9.4.1 Advection–diffusion equation

The advection–diffusion equation describes a system where a quan-
tity, e.g., temperature, solute concentration, etc., is transferred due
to two processes, namely advection and diffusion. Transfer by ad-
vection means that the quantity is transported by fluid flow. Let
c be the quantity, e.g., salt concentration in a brine, and let u⃗ be
the velocity field of the fluid flow (not necessarily inside a porous
medium), then the local change in the quantity ∂c/∂t due to advec-
tion of the quantity is given by gradient in the quantity, i.e., ∇c, in
the direction of the flow field u⃗: thus the change is given as u⃗ · ∇c.
The change in quantity due to advection is

∂c
∂t

= −u⃗ · ∇c . (9.27)

Diffusion is the process of movement due to a quantity gradi-
ent, usually a movement from high towards low quantity. Typi-
cal examples are temperature and solute concentration, with heat
transported from high temperature towards lower temperature,
and solutes transported from high concentrations towards lower
concentrations. Diffusion is described by Fick’s first law, where
the diffusion flux vector j⃗ of the quantity c is proportional to the
quantity gradient ∇c by a diffusion coefficient D:

Fick’s first lawj⃗ = −D∇c . (9.28)

This flux then give a change in quantity c with time as given by
Fick’s second law:

Fick’s second law∂c
∂t

= −∇ · j⃗ = ∇ (D∇c) = D∇2c , (9.29)

where the last equality only holds for a constant diffusion constant
D.

If we have a quantity that is transferred by both advection and
diffusion, e.g., a drop of ink in a stream, we will get a combination
of the advection equation, Eq. (9.27), and the diffusion equation,
Eq. (9.29), yielding the advection-diffusion equation: Advection-diffusion equation

∂c
∂t

= −u⃗ · ∇c + D∇2c . (9.30)

Note that this equation describes physical systems where you
have diffusion. For the one-dimensional example described by
the Buckley-Leverett equation, we have no diffusion, or to be more
precise; we have ignored the diffusive term related to capillary
pressure. In the following we will describe an artificial diffusion
that arise in the numerical solutions. This numerical diffusion has
no physical counterpart.

9.4.2 Numerical diffusion

We now want to investigate the solution of the Buckley-Leverett
equation, Eq. (9.14), by different numerical methods. These numer-
ical methods will be applied in the next chapter, in this section we
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will only investigate the consequence of applying different numeri-
cal solution methods.

After employing the chain rule, we have the Buckley-Leverett
equation on the form given by Eq. (9.15):

−
(

d fw

dsw

)
∂sw

∂x
=

ϕ

qt

∂sw

∂t
. (9.31)

This equation can be solved explicitly as

−
((

d fw

dsw

)
∂Sw

∂x

)n

i
=

ϕ

qt

(
∂Sw

∂t

)n

i
, (9.32)

or implicitly as

−
((

d fw

dsw

)
∂Sw

∂x

)n+1

i
=

ϕ

qt

(
∂Sw

∂t

)n+1

i
. (9.33)

We will consider both the explicit and implicit case, and compare
them in the end.

We will later need the following reformulation of the second-
order time derivative to the second-order spatial derivative:

∂2sw

∂t2 =
∂

∂t

(
∂sw

∂t

)
= − ∂

∂t

(
qt

ϕ

(
d fw

dsw

)
∂sw

∂x

)
= − qt

ϕ

(
d fw

dsw

)
∂

∂t

(
∂sw

∂x

)
= − qt

ϕ

(
d fw

dsw

)
∂

∂x

(
∂sw

∂t

)
= − qt

ϕ

(
d fw

dsw

)
∂

∂x

(
− qt

ϕ

(
d fw

dsw

)
∂sw

∂x

)
=

(
qt

ϕ

d fw

dsw

)2 ∂2sw

∂x2 . (9.34)

Let us now continue by trying to solve the Buckley-Leverett
solution numerically. We start by looking at the time derivative of
the saturation. Using Taylor series of the saturation sw around the
time tn we obtain

sw(tn+1) = sw(tn) +
∂sw

∂t
(tn)(tn+1 − tn)

+
1
2

∂2sw

∂t2 (tn)(tn+1 − tn)2 +O((tn+1 − tn)3) . (9.35)

With ∆t = tn+1 − tn, we can then rewrite this equation as

sn+1
w − sn

w
∆t

=

(
∂sw

∂t

)n
+

∆t
2

(
∂2sw

∂t2

)n

+O((∆t)2) , (9.36)

where the superscript indicates at which time step the function
is evaluated. The first part of this equation is then the forward
difference quotient approximation of the first-order derivative.
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From a Taylor series expansion of saturation sw around the time
tn+1 we obtain

sw(tn) = sw(tn+1) +
∂sw

∂t
(tn+1)(tn − tn+1)

+
1
2

∂2sw

∂t2 (tn+1)(tn − tn+1)2 +O((tn − tn+1)3) , (9.37)

which can be rewritten as

sn+1
w − sn

w
∆t

=

(
∂sw

∂t

)n+1
− ∆t

2

(
∂2sw

∂t2

)n+1

+O((∆t)2) . (9.38)

The first part then gives a backward-difference quotient shifted in
time.

To obtain the spatial derivative of the saturation, we again use
the Taylor series, but this time centered around the spatial coor-
dinate xi of grid cell i, and evaluated at the coordinate xi−1 of the
upstream grid-cell xi−1:

sw(xi−1) = sw(xi) +
∂sw

∂x
(xi)(xi−1 − xi)

+
1
2

∂2sw

∂x2 (xi)(xi−1 − xi)
2 +O((xi−1 − xi)

3) . (9.39)

Denoting sw(xi) as swi, and letting ∆x = xi − xi−1, we get

swi − swi−1

∆x
=

(
∂sw

∂x

)
i
− ∆x

2

(
∂2sw

∂x2

)
i
+O((∆x)2) . (9.40)

We now have all we need to investigate the numerical versions of
the Buckley-Leverett equation. Let us start by the explicit version,
as given by Eq. (9.32). If we use the forward difference quotient for
the time differential and the upstream difference quotient for the
spatial derivative, we get the following numerical equation for the
explicit equation Eq. (9.32):

sn+1
wi − sn

wi
∆t

= − qt

ϕ

(
d fw

dsw

) sn
wi − sn

wi−1
∆x

(9.41)

We know that this equation has an error in order O(∆t) and O(∆x)
in time and space, respectively. We will now investigate this error
by reformulating the equation to an equation with errors of higher
order.

For this, we use Eq. (9.36) and Eq. (9.40) to replace the difference
quotients with partial differential equations:

(
∂sw

∂t

)n

i
+

∆t
2

(
∂2sw

∂t2

)n

i
= − qt

ϕ

(
d fw

dsw

)[(
∂sw

∂x

)n

i
− ∆x

2

(
∂2sw

∂x2

)n

i

]
.

(9.42)
Removing the numerical coordinates, and using Eq. (9.34) to trans-
form the second-order time derivative with a spatial derivative of
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the same order, we get

∂sw

∂t
= − qt

ϕ

(
d fw

dsw

)
∂sw

∂x
+

(
qt

ϕ

(
d fw

dsw

)
∆x
2

−
(

qt

ϕ

d fw

dsw

)2 ∆t
2

)
∂2sw

∂x2

= − qt

ϕ

(
d fw

dsw

)
∂sw

∂x
+

qt

ϕ

(
d fw

dsw

)(
∆x
2

− qt

ϕ

(
d fw

dsw

)
∆t
2

)
∂2sw

∂x2 .

(9.43)

We observe that this equation is on the same form as the advection-
diffusion equation, where the first term

u =
qt

ϕ

(
d fw

dsw

)
, (9.44)

reflect the velocity in the advection term, while

De = u
(

∆x
2

− u
∆t
2

)
, (9.45)

reflect the diffusion constant in the diffusion term. We can thus
write Eq. (9.43) as

∂sw

∂t
= − qt

ϕ

(
d fw

dsw

)
∂sw

∂x
+ De

∂2sw

∂x2 . (9.46)

We see that the first two terms are the original Buckley-Leverett
equation. Thus, in this form of the explicit equation, Eq. (9.41),
where we have reduced the error to an order O((∆t)2) and
O((∆x)2), we see that the difference between the Buckley-Leverett
equation and the explicit numerical approximation is given by an
extra diffusion term. That the equation resembles an advection-
diffusion equation, and that the error is given by the diffusion term,
is the reason such numerical errors are called numerical diffusion.

Doing the same algebraic manipulations for the implicit method,
we get the equation

∂sw

∂t
= − qt

ϕ

(
d fw

dsw

)
∂sw

∂x
+ Di

∂2sw

∂x2 , (9.47)

where the diffusion constant for the implicit method is

Di = u
(

∆x
2

+ u
∆t
2

)
. (9.48)

We see that the diffusion term will smear out the solution, and it
will smear it out relative to the magnitude of the diffusion term. We
also observe that Di > De, thus there is more numerical diffusion in
the implicit method than the explicit. By choosing The implicit method nas more numeri-

cal diffusion than the explixit

∆x = u∆t , (9.49)

we can remove the numerical diffusion when using the explicit
method. Note that this choice of ∆x and ∆t will give other numeri-
cal issues, however, it is possible to reduce the numerical diffusion
to a minimum by choosing values close to the equality in Eq. (9.49).
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9.5 Exercises

Exercise 9.1 Create a Python script to calculate the Buckley-Leverett
solution for the saturation. The basic data is given in Table 9.1.

SPE Metric SI
l 200 m 200 m
µw 1 cP 1 × 10−3 Pa s
µn 2 cP 2 × 10−3 Pa s
ϕ 0.2 0.2
nw 2.0 2.0
nn 2.0 2.0
krwo 0.4 0.4
qt 0.2 m/d 2.3148 m/s

Table 9.1: Basic data for exam-
ple.

a) Plot the saturation versus distance from inlet for a set of times
that illustrate the transient period.

b) Do a sensitivity study on the oil viscosity to investigate how the
oil viscosity influence:

• The fractional flow curve

• The shock front saturation

• The Buckley-Leverett curve

Exercise 9.2 Derive the numerical diffusion constant De given by
Eq. (9.48) for the implicit numerical solution method.



10
Numerical methods for two phase flow

You wanna know how to rhyme you
better learn how to add

Mos Def - Mathematics

In this chapter we will solve numerically a one-dimensional
two-phase flow problem. Our derivations can easily be extended
to higher dimensional problems. The reasons for restricting our
derivations to one dimension is to keep the notation simple and
that we have an analytical solution through the Buckley-Leverett
analysis in the previous section. Thus, we will start by investigat-
ing the same system as was considered for the Buckley-Leverett
equation in the previous section, i.e., the set of equations for two-
phase incompressible flow, as given by Eqs. (9.6). These equations
will now be solved numerically. After solving these equations for
incompressible fluids and rock, we will consider the more general
case with compressible fluids. For the incompressible cases the nu-
merical solution will be conducted by two methods, one method
called IMplicit Pressure, Explicit Saturation, or IMPES, and another
called fully implicit. The compressible case will be solved by the
IMPES method only.

There exist a range of other solution methods. One notable
method is the simultaneous solution method; this method re-
quires a non-zero capillary pressure function, and uses the cap-
illary pressure to express the saturations in terms of pressures,
thereby obtaining a set of equations in pressure only. This method
is explained in detail by Aziz and Settari (1979). Another notable
mention is finite element methods, which is covered in details by
Chen et al. (2006). The finite element methods have strengths when
it comes to handling more complex grids, boundary conditions
and reduced grid orientation effects. Finite element methods are
newer than finite difference methods, and have not yet caught on in
reservoir simulation.

10.1 Incompressible flow

We will start by emulating the conditions for the Buckley-Leverett
equation, thus we want to consider a 1D system where both fluids
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and the rock are incompressible.
Consider the set of equations given by Eqs. (9.6):

∂

∂x

(
kkro

µo

∂po

∂x

)
=

∂

∂t
(ϕso)

∂

∂x

(
kkrw

µw

∂pw

∂x

)
=

∂

∂t
(ϕsw) . (10.1)

The left side of these equations are of the form given by Eq. (4.53)
in the chapter on finite differences:

∂

∂x

(
ap(x)

∂pp

∂x

)
, (10.2)

where ap(x) = k(x)krp(x)/µp(x), and p is either o for oil or w for
water.

Following the discretization given by Eq. (4.55), we have the
following discretization for the left side of the equations above.

∂

∂x

(
ap(x)

∂pp

∂x

)
≃

ap

(
x + ∆xr

2

)
Pp(x+∆xr)−Pp(x)

∆xr
− ap

(
x − ∆xl

2

)
Pp(x)−Pp(x−∆xl)

∆xl

∆xr+∆xl
2

.

(10.3)

For a 1D grid with varying grid size, we have ∆xr = (∆xi +

∆xi+1)/2 and ∆xl = (∆xi + ∆xi−1)/2. Assuming all cells have
equal x-length, then ∆xr = ∆x = ∆xl , and we get

∂

∂x

(
ap(x)

∂pp

∂x

)
≃

ap

(
x + ∆x

2

)
(∆x)2

(
Pp(x + ∆x)− Pp(x)

)
−

ap

(
x − ∆x

2

)
(∆x)2

(
Pp(x)− Pp(x − ∆xl)

)
. (10.4)

From Eq. (10.3) we observe that we need to evaluate ap at a point
between the cell centers, e.g.:

ap

(
x +

∆xr

2

)
=

k
(

x + ∆xr
2

)
krp

(
x + ∆xr

2

)
µp

(
x + ∆xr

2

) . (10.5)

For the permeability, it is common to associate the permeability
between two cell centers as the harmonic mean of the permeability
in each cell center: When considering cells in series, we

take the harmonic mean, while cells in
parallel gives the arithmetic mean.k

(
xi +

∆xr

2

)
=

(
∆xi
2

+
∆xi+1

2

)
1

∆xi
2

k(xi)
+

∆xi+1
2

k(xi+1)

, (10.6)

When using the index notation, this can be written as

ki+1/2 =
∆xi + ∆xi+1
∆xi
ki

+
∆xi+1
ki+1

. (10.7)
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For a constant cell size ∆x, this simplifies to

ki+1/2 =
2

1
ki
+ 1

ki+1

. (10.8)

Filling Eq. (10.7) into Eq. (10.3), we get

∂

∂x

(
ap(x)

∂pp

∂x

)
(xi) ≃

2krpi+1/2

∆xr+∆xl
2 µpi+1/2

(
∆xi
ki

+
∆xi+1
ki+1

) (Ppi+1 − Ppi

)
− 2krpi−1/2

∆xr+∆xl
2 µpi−1/2

(
∆xi
ki

+
∆xi−1
ki−1

) (Ppi − Ppi−1

)
. (10.9)

This equation is commonly written as

∂

∂x

(
ap(x)

∂pp

∂x

)
(xi) ≃ Ti+ 1

2
λpi+ 1

2

(
Ppi+1 − Ppi

)
−Ti− 1

2
λpi− 1

2

(
Ppi − Ppi−1

)
,

(10.10)
where T is called the transmissibility, and

λp = krp/µp (10.11)

is the mobility of phase p. For constant permeability, and cell size
∆x, we get the transmissibilities as

Ti− 1
2
= Ti+ 1

2
= T =

k

(∆x)2 (10.12)

Note the similarity between the expression for the flux over faces
in the finite volume formulation, Eq. (7.17), and Eq. (10.10) with the
transmissibility Eq. (10.12).

As the relative permeability, and thereby mobility, is dependent
on saturation, our discretized equation is dependent on both pres-
sure and saturation, and we need to choose how to approximate
the mobility. This is usually done by weighting the mobilities in the Mobility weighting

upstream and downstream block:

λpi+ 1
2
=

α∆xiλpi + (1 − α)∆xi+1λpi+1

α∆xi + (1 − α)∆xi+1
. (10.13)

If the grid cells have equal size ∆x, then this simplifies to

λpi+ 1
2
= αλpi + (1 − α)λpi+1 . (10.14)

We will only consider two cases. The first is the upstream
weighting where we select the mobility in the upstream cell, that is
the cell where the flow is coming from. If we assume that pi > pi+1

that means α = 1: Upstream weighting: select the mobil-
ity in the upstream cellλpi+ 1

2
= λpi . (10.15)

The second case is the average selection where α = 1/2: Average selection

λpi+ 1
2
=

∆xiλpi + ∆xi+1λpi+1

∆xi + ∆xi+1
. (10.16)
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For constant grid cell size ∆x

λpi+ 1
2
=

1
2
(
λpi + λpi+1

)
. (10.17)

For the right hand side of Eqs. (10.1) we have

∂

∂t
(
ϕsp
)
= ϕ

∂sp

∂t
, (10.18)

and we want to use a backward difference quotient of the time
derivative, as given by:(

ϕ
∂sp

∂t

)t+∆t

i
≃ ϕ

St+∆t
pi

− St
pi

∆t
. (10.19)

To simplify notation, we will drop the t + ∆t superscript: Superscript t denotes current time,
while no superscript denotes the state
after next time step, that is at time
t + ∆t

(
ϕ

∂sp

∂t

)
i
≃ ϕ

Spi − St
pi

∆t
. (10.20)

As the oil saturation is so = 1 − sw, we have that

∂so

∂t
= −∂sw

∂t
, (10.21)

thus we eliminate oil saturation so and write the equations as equa-
tions of water saturation sw only.

For simplicity we will in the following assume a constant trans-
missibility, and the discrete forms of the oil and water equations We will assume constant permeability

and cell size; Eq. (10.12)can now be written as:

Tλoi+ 1
2
(Poi+1 − Poi )− Tλoi− 1

2
(Poi − Poi−1) = −ϕ

Swi − St
wi

∆t

Tλwi+ 1
2
(Pwi+1 − Pwi )− Tλwi− 1

2
(Pwi − Pwi−1) = ϕ

Swi − St
wi

∆t
.

(10.22)

Here we use capital letters to indicate that this is part of our nu-
merical scheme, thus the pressures Pt

i and saturation St
w are the

pressure and saturation in cell i at time t.
The boundary conditions for multi-phase flow are as for one

phase flow, but rates and pressures can be specified for each of the
phases. Normally, we inject water at constant rate or at constant
pressure, and produce oil and water at constant rate or at a con-
stant pressure. For our 1D case, the constant rate corresponds to a
constant Darcy velocity.

Constant water injection Darcy velocity is a fairly simple con-
dition to handle. The derivation is similar to the single phase left Boundary conditions for constant

water injection rate on left hand sideNeumann boundary condition, Eq. (4.65). First, we have that the
left Darcy velocity for water is given by

ql = − kkrw

µw

∂pw

∂x
(x1/2) = −aw1/2

∂pw

∂x
(x1/2) , (10.23)

From Eq. (4.56) we then have the following equation for water:

∂

∂x

(
aw

∂

∂x
pw

)
1
≃ aw1+1/2 (Pw2 − Pw1)

(∆x)2 − aw1/2
∂pw
∂x (x1/2)

∆x

= Tλw1+1/2 (Pw2 − Pw1) +
ql
∆x

. (10.24)
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For oil the Darcy velocity is zero, so ao1/2 = 0, and

∂

∂x

(
ao

∂

∂x
po

)
1
≃ ao1+1/2 (Po2 − Po1)

(∆x)2 − ao1/2
∂po
∂x (x1/2)

∆x

= Tλo1+1/2 (Po2 − Po1) . (10.25)

For the right hand side we keep a constant pressure boundary
condition. If we in Eq. (10.9) assume a dummy grid block n + 1 Constant pressure boundary condition

at right hand side outletwith infinite permeability kn+1 = ∞ and pressure pr, we will get a
constant pressure pr on the hand right side:
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∂x

(
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∂pp

∂x

)
(xn)

≃ 2krpn+1/2

∆xµp

(
∆x
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+ ∆x
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) (Ppn+1 − Ppn

)
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(
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+ ∆x
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) (Ppn − Ppn−1

)
=

2kkrpn+1/2

(∆x)2µp

(
pr − Ppn

)
− kkrpn−1/2

(∆x)2µp

(
Ppn − Ppn−1

)
≃ 2Tλpn+1/2

(
pr − Ppn

)
− Tλpn−1/2

(
Ppn − Ppn−1

)
. (10.26)

If we use the capillary pressure to replace all the wetting pres-
sures Pw by non-wetting pressures Pn, then in the equations above
the non-wetting pressure Pn and wetting saturation Sw are the un-
knowns to be solved for. All the mobilities, and the capillary pres-
sure, are functions of the saturation. Thus, to solve the equations
we need to calculate the mobilities and capillary pressures, and we
can not calculate these before we know the saturation. In the more
general case considered later, where we allow for compressible flu-
ids and compressible rock, the mobilities and porosity are also a
function of pressure, and we have extra coefficients also dependent
on pressure and saturation.

As we considered the Buckley-Leverett equation without capil-
lary pressure, we will use pc = 0 in the following. Thus the non-
wetting and wetting pressures are equal; pn = p = pw. The discrete
forms of the non-wetting and wetting equations, Eqs. (10.22), can
then be simplified to:

Tλni+ 1
2
(Pi+1 − Pi)− Tλni− 1

2
(Pi − Pi−1) = −ϕ

Swi − St
wi

∆t

Tλwi+ 1
2
(Pi+1 − Pi)− Tλwi− 1

2
(Pi − Pi−1) = ϕ

Swi − St
wi

∆t
. (10.27)

Adding these two equations then gives the equation for pressure as

T (λni+ 1
2
+ λwi+ 1

2
)(Pi+1 − Pi)− T (λni− 1

2
+ λwi− 1

2
)(Pi − Pi−1) = 0 .

(10.28)
Note that, since the mobilities in the incompressible case are func-
tions of saturation only, this equation does not involve the pressure
at the previous time step. The reason for this is that pressure trav- The pressure equation only involve

pressure after next time stepels (diffuse) infinitely fast. Thus the pressure distribution can be
obtained by solving the pressure equation above.

We can define the total mobility λt as λo + λw and rewrite Total mobility
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Eq. (10.28) as

Tλti− 1
2

Pi−1 − T (λti− 1
2
+ λti+ 1

2
)Pi + Tλti+ 1

2
Pi+1 = 0 . (10.29)

One possible solution method is to iterate on the solution and
update coefficients until convergence is reached. This will be inves-
tigated in subsection 10.1.3. We will start by looking at the simpler
IMPES method; this method evaluates the mobilities at time t in-
stead of time t + ∆t.

10.1.1 IMPES solution to incompressible flow

IMPES stands for “IMplicit Pressure Explicit Saturation”, and IMPES =
IMplicit Pressure Explicit Saturationsince the mobilities, in the incompressible case, are functions of

saturation only, they are evaluated explicitly, i.e. at time t. We will,
as before, denote this by the superscript t. We can regain generality
with respect to a variable permeability field by defining the product
of transmissibility and mobility as Λ:

Λt
i± 1

2
= Ti± 1

2
λt

ti± 1
2

. (10.30)

Pressures are found by an implicit method, thus evaluated the at
the next time step t + ∆t. Eq. (10.29) is then

Λt
i− 1

2
Pi−1 − (Λt

i− 1
2
+ Λt

i+ 1
2
)Pi + Λt

i+ 1
2

Pi+1 = 0 . (10.31)

We thus have a system of linear equations where the unknowns are
pressures only.

The system of equations given by Eq. (10.31), and the boundary
conditions (10.24), (10.25), and (10.26) can be expressed in matrix
form as

AP + e = 0 , (10.32)

where

A =



−Λt
1+ 1

2
Λt

1+ 1
2

0 0 · · · 0 0 0

Λt
2− 1

2
−
(

Λt
2− 1

2
+ Λt

2+ 1
2

)
Λt

2+ 1
2

0 · · · 0 0 0

0 Λt
3− 1

2
−
(

Λt
3− 1

2
+ Λt

3+ 1
2

)
Λt

3+ 1
2

0 · · · 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · −
(

Λt
n−2− 1

2
+ Λt

n−2+ 1
2

)
Λt

n−2+ 1
2

0

0 0 0 0 · · · Λt
n−1− 1

2
−
(

Λt
n−1− 1

2
+ Λt

n−1+ 1
2

)
Λt

n−1+ 1
2

0 0 0 0 · · · 0 Λt
n− 1

2
−
(

Λt
n− 1

2
+ Λt

n+ 1
2

)


,

(10.33)
and

e =



ql
∆x
0
...
0

2Λt
n+ 1

2
pr


. (10.34)
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After solving for pressure, we can then update the saturation
from either equation in Eqs. (10.22):

Swi = St
wi

− ∆t
ϕ

(
Ti+ 1

2
λt

ni+ 1
2
(Pi+1 − Pi)− Ti− 1

2
λt

ni− 1
2
(Pi − Pi−1)

)
.

(10.35)

10.1.2 IMPES – Python implementation

In this section we will implement the method outlined in sec-
tion 10.1.1, and compare the numerical solution with the Buckley–
Leverett equation (Section 9.3).

The simulator is implemented as a class Simulator1DIMPES in a
file IMPES1D.py. Class instances are initialized with default values. Each instance of a class has its own

version of the dataThis class has two methods; doTimestep and simulateTo. The fol-
lowing code creates a 200 m long model with 100 cells, and simulate
for 30 days with default parameters:

from IMPES1D import Simulator1DIMPES

from conversion import daysToSeconds,secondsToDays

simulator = Simulator1DIMPES(100,200.0)

simulator.simulateTo(daysToSeconds(30))

print(simulator.pressure)

print(simulator.saturation)

The conversion is a straight forward conversion from days to sec-
onds, as we use SI units in the simulator itself.

Initialization of Simulator1DIMPES instances is, as for all classes,
performed by the __init__ method:

def __init__(self,Ncells,length):

’’’

Args:

Ncells: Number of cells

length: Total length [m]

’’’

self.Ncells = Ncells

self.length = length

self.deltaX = length/Ncells

self.poro = 0.2*np.ones(Ncells)

#This next line will also define the transmissibilities

self._perm = self.setPermeabilities(1.0E-13*np.ones(Ncells

↪→ ))

self.pressure = 1.0E7*np.ones(Ncells)

self.saturation = 0.2*np.ones(Ncells)

self.rightPressure = 1.0E7

self.leftDarcyVelocity = 2.315E-6 * self.poro[0]

self.mobilityWeighting = 1.0

self.deltat = daysToSeconds(1)
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self.time = 0.0

self.oilViscosity = 2.0E-3

self.waterViscosity = 1.0E-3

self.relpermWater = coreyWater(2.0,0.4,0.2,0.2)

self.relpermOil = coreyOil(2.0,0.2,0.2)

We see that the members relpermWater and relpermOil are initi-
ated with instances of the classes coreyWater and coreyOil respec-
tively. These classes are defined in the file corey.py as

class coreyWater:

’’’

Water relative permeability

’’’

def __init__(self,Nw,Krwo,Swirr,Sorw):

’’’

Args:

Nw: Exponent

Krwo: Relperm at 1-S_{orw}

Swirr: S_{wi}

Sorw: S_{orw}

’’’

self.Nw = Nw

self.Krwo = Krwo

self.Swirr = Swirr

self.Sorw = Sorw

def __call__(self,Sw):

nSw = normSw(Sw,self.Swirr,self.Sorw)

return self.Krwo*nSw**self.Nw

and

class coreyOil:

def __init__(self,No,Swirr,Sorw):

’’’

Args:

No: Exponent

Swirr: S_{wi}

Sorw: S_{orw}

’’’

self.No = No

self.Swirr = Swirr

self.Sorw = Sorw

def __call__(self,Sw):

nSw = normSw(Sw,self.Swirr,self.Sorw)

return (1.0-nSw)**self.No

Any change in the permeability should trigger a recalculation of
the transmissibilities. We therefore calculate the transmissibilities
every time we set the permeability values. The permeability field
is decleared as a private member _perm. The permeability field is A private member of a class is classically

a member that is denied access from
outside the class. Private instances
does not actually exist in Python,
however, it is a convention that a name
prefixed with an underscore (such as
_perm) should be treated as private.

changed through the setPermeabilities method, which then also
set the transmissibilities.
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def setPermeabilities(self,permVector):

’’’

Set permeabilities

Args:

permVector: A numpy array of length

self.Ncells with perm values

’’’

self._perm = permVector

self._Tran = (2.0/(1.0/self._perm[:-1]+1.0/self._perm[1:])

↪→ )/self.deltaX**2

self._TranRight = self._perm[-1]/self.deltaX**2

The actual simulation of one time step is performed by the
method doTimestep

def doTimestep(self):

’’’

Do one time step of length self.deltat

’’’

mobOil = self.relpermOil(self.saturation)/self.

↪→ oilViscosity

mobWater = self.relpermWater(self.saturation)/self.

↪→ waterViscosity

upW = self.mobilityWeighting

downW = 1.0-upW

mobOilW = mobOil[:-1]*upW + mobOil[1:]*downW

mobWaterW = mobWater[:-1]*upW + mobWater[1:]*downW

oilTrans = self._Tran*mobOilW

waterTrans = self._Tran*mobWaterW

oilTransRight = self._TranRight*mobOil[-1]

waterTransRight = self._TranRight*mobWater[-1]

totalTrans = oilTrans + waterTrans

totalTransRight = oilTransRight + waterTransRight

# ----------------------------

# Solve implicit for pressure:

#

# We solve a linear system matrixA pressure = vectorE

#

# Since the system is small and 1D we can buid a

# dense matrix and use explicit inversion

# --- Build matrixA:

matrixA = np.zeros((self.Ncells,self.Ncells))

# First row

matrixA[0,0] = -totalTrans[0]

matrixA[0,1] = totalTrans[0]

# Middle rows

for ii in np.arange(1,self.Ncells-1):
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matrixA[ii,ii-1] = totalTrans[ii-1]

matrixA[ii,ii] = -totalTrans[ii-1]-totalTrans[ii]

matrixA[ii,ii+1] = totalTrans[ii]

# Last row

matrixA[-1,-2] = totalTrans[-1]

matrixA[-1,-1] = -2*totalTransRight - totalTrans[-1]

# ------

# --- Build vectorE:

vectorE = np.zeros(self.Ncells)

vectorE[0] = -self.leftDarcyVelocity/self.deltaX

vectorE[-1] = -2.0*totalTransRight*self.rightPressure

# ------

# --- Solve linear system:

matrixAInv = np.linalg.inv(matrixA)

pressure = np.dot(matrixAInv,vectorE)

# --------------------------------

# Solve explicitly for saturation:

dtOverPoro = self.deltat/self.poro

self.saturation[1:-1] = self.saturation[1:-1] - dtOverPoro

↪→ [1:-1]*(oilTrans[1:]*(pressure[2:]-pressure[1:-1]) +

↪→ oilTrans[:-1]*(pressure[:-2]-pressure[1:-1]))

self.saturation[0] = self.saturation[0] - dtOverPoro

↪→ [0]*oilTrans[0]*(pressure[1]-pressure[0])

self.saturation[-1] = self.saturation[-1] + dtOverPoro

↪→ [-1]*(2*waterTransRight*(self.rightPressure-pressure[-1])-

↪→ waterTrans[-1]*(pressure[-1]-pressure[-2]))

maxsat = 1.0-self.relpermOil.Sorw

minsat = self.relpermOil.Swirr

self.saturation[ self.saturation>maxsat ] = maxsat

self.saturation[ self.saturation<minsat ] = minsat

# --------------------------------

self.pressure = pressure

self.time = self.time + self.deltat

The method simulateTo simply calls doTimestep sufficiently
many times to advance the simulation to a prescribed time

def simulateTo(self,time):

’’’

Progress simulation to specific time with

a constant timestep self.deltat

Args:

time: Time to advance to [s]
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’’’

baseDeltat = self.deltat

while self.time < time:

if self.time + baseDeltat >= time:

self.deltat = time - self.time

self.doTimestep()

self.deltat = baseDeltat

self.time = time

else:

self.doTimestep()

Fig. 10.1 shows an example of an IMPES solution using an up-
stream mobility weighting. We see that the front moves forward
with time. As explained in the section on numerical diffusion,
Sec. 9.4, the IMPES method is expected to have a significant nu-
merical diffusion. This will smear out the front, so it will not be
as sharp as in the analytical solution. This smearing of the front is
clearly visible in the figure.
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Figure 10.1: The IMPES so-
lution using an upstream
mobility weighting. The nu-
merical model has 50 grid
cells, the time step size is
1 day, and a line is plotted for
each 100 days.

To see the effect of mobility weighting, we have compared the
upstream weighting with a weighting of α = 0.85 in Fig. 10.2. This
figure also contain the Buckley-Leverett solution.
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Figure 10.2: The Buckley–
Leverett solution compared
to the IMPES solution for an
upstream mobility weighting
and a weighting of α = 0.85.
The numerical model has
50 grid cells, the time step size
is 1 day, and a line is plotted
for each 100 days.

In this figure the α = 0.85 seems closer to the analytical solution,
and could therefore be preferable. If we try even smaller mobility
weighting α the solutions get truly un-physical.
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10.1.3 Fully–implicit solution to incompressible flow

The fully-implicit method needs to solve Eqs. (10.22) simultane-
ously. As the mobilities are functions of saturation, through relative
permeability, this equation system is non-linear. In order to solve
the system of non-linear equations we will use the iterative Newton
method.

For a single-variable function f where the derivative f ′ is known,
a root of f can be found by the iterative Newton method The Newton method is an iterative

method for solving non-linear equa-
tions.

x(m+1) = x(m) − f (x(m))

f ′(x(m))
, (10.36)

where x(m) is the m’th iteration for x, which is consequently mov-
ing closer to a root for f . Thus, for a sufficiently large m we have
f (x(m)) ≃ 0.

Newton’s method can be extended to a set of k variables and k
real-valued functions. The k variables can be written on vector form
as x = (x1, x2, . . . , xk), and the k functions can be written as a single
function F = ( f1, f2, . . . , fk), where fi : Rk → R, thus F : Rk → Rk.
We can find the root of F by the following iterative procedure: The Newton method can be extended

to systems of non-linear equations by
substituting the derivative with the
Jacobian.

x(m+1) = x(m) − J−1
F (x(m))F(x(m))) , (10.37)

where J−1
F is the inverse of the Jacobian matrix

JF =


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

 . (10.38)

We now want to reformulate our finite difference formulations,
Eqs. (10.22), to obtain functions in pressure and saturation which
become zero-valued for the pressure and saturation solution we
seek. For this end we move all terms over to one side:

Tλni+ 1
2
(Pni+1 − Pni )− Tλni− 1

2
(Pni − Pni−1) + ϕ

Swi − St
wi

∆t
= 0

Tλwi+ 1
2
(Pwi+1 − Pwi )− Tλwi− 1

2
(Pwi − Pwi−1)− ϕ

Swi − St
wi

∆t
= 0

.

(10.39)
The left side of these equations are zero-valued exactly when the
free variables, i.e., the pressures and saturations, are a solution.
Whenever we have a set of pressures and saturation values that are
not a solution, then the equations above do not hold, thus the left
sides are not zero. The difference from zero is called the residual
and denoted by R:

Rni = Tλni+ 1
2
(Pni+1 − Pni )− Tλni− 1

2
(Pni − Pni−1) + ϕ

Swi − St
wi

∆t

Rwi = Tλwi+ 1
2
(Pwi+1 − Pwi )− Tλwi− 1

2
(Pwi − Pwi−1)− ϕ

Swi − St
wi

∆t

.

(10.40)
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As an initial guess for the solution of Eqs. (10.22) it is common
to use the saturation and pressure at the previous time step. Except
for trivial cases, the initial guess will give non-zero residuals. We
can then use the Newton’s method, an iterative process, to converge
to the root of the residuals.

While the fully-implicit method holds in general, we will now
restrict ourselves to try to solve the Buckley-Leverett case; thus
assume pc = pn − pw = 0, so that we only have one pressure
Pn = Pw = P. Let S(m)

w be the water saturation value, P(m) be
the pressure, and λ

(m)
p the mobility of phase p at iteration m. The

residuals are then of the form

R(m)
ni = Tλ

(m)
n

i+ 1
2

(
P(m)

i+1 − P(m)
i

)
− Tλ

(m)
n

i− 1
2

(
P(m)

i − P(m)
i−1

)
+ ϕ

S(m)
wi − St

wi

∆t

R(m)
wi = Tλ

(m)
w

i+ 1
2

(
P(m)

i+1 − P(m)
i

)
− Tλ

(m)
w

i− 1
2

(
P(m)

i − P(m)
i−1

)
− ϕ

S(m)
wi − St

wi

∆t

.

(10.41)
Note that the residuals are not considered a function of the mobil-
ities, as these are functions of pressure and saturation. The vector
of residuals evaluated at iteration m, R(m) = R(P(m), S(m)

w ), is a R(m): The vector of residuals at itera-
tion m
P(m): The vector of pressure values at
iteration m
S(m): The vector of saturation values at
iteration m

measure for how far we are from the solution; a measure we want
to reduce to zero (or, in practice, below a pre-described threshold)
by iterating using Newton’s method.

We need to add boundary conditions at the inlet and outlet;
The residual at the first grid cell (inlet) is (see Eq. (10.23), and
Eq. (10.24)) Boundary conditions

R(m)
n1 = Tλ

(m)
n

1+ 1
2

(
P(m)

2 − P(m)
1

)
+ ϕ

S(m)
w1 − St

w1

∆t

R(m)
w1 = Tλ

(m)
w

1+ 1
2

(
P(m)

2 − P(m)
1

)
+

ql
∆x

− ϕ
S(m)

w1 − St
w1

∆t

, (10.42)

while the residual at the last cell (outlet) is (see Eq. (10.26))

R(m)
nn = 2Tλ

(m)
n

n+ 1
2

(
pr − P(m)

n

)
− Tλ

(m)
n

n− 1
2

(
P(m)

n − P(m)
n−1

)
+ ϕ

S(m)
wn − St
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∆t
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wn = 2Tλ

(m)
w

n+ 1
2

(
pr − P(m)
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)
− Tλ
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w

n− 1
2

(
P(m)

n − P(m)
n−1

)
− ϕ

S(m)
wn − St

wn

∆t

.

(10.43)
The terms in the residual that stem from the spatial discretiza-

tion (proportional to T) are called flow terms, while the terms Flow terms

that stem from time discretization (proportional to 1
∆t ) are called

accumulation terms. Terms from the boundary conditions ( ql
∆x Accumulation terms

in Eq. (10.42), and 2Tλ
(m)
w

n+ 1
2

(
pr − P(m)

n

)
in Eq. (10.43)) are called

source terms. Note that source terms that extract mass from the Source terms

reservoir are often alternatively called sink terms, reserving the
word source term for injection. Terms that represent wells are the
main source terms in reservoir simulation. Wells are either gov-
erned by rate, giving terms proportional to the rate similar to the
source term in Eq. (10.42), or by pressure, giving terms proportional
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to the difference between well pressure and cell pressure similar to
the source term in Eq. (10.43).

For the Newton method, we write the unknowns, i.e., the pres-
sures Pi and saturation values Swi , as a vector X. We also write the
residuals as a vector R:

X =



P1

Sw1

P2

Sw2
...

Pn

Swn


, R =



Rn1

Rw1

Rn2

Rw2
...

Rnn

Rwn


. (10.44)

Observe that X and R are of equal length 2n, thus we have the same
number of equations as unknowns. X(m): The vector of unknowns at

iteration mIf we denote the m’th iteration as X(m), then a single iteration in
Newton’s method is given by (see Eq. (10.37))

X(m+1) = X(m) − J−1
R (X(m))Rm , (10.45)

where JR is the Jacobian matrix:

JR =



∂Rn1
∂P1

∂Rn1
∂Sw1

∂Rn1
∂P2

∂Rn1
∂Sw2

· · · ∂Rn1
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∂Rn1
∂Pn

∂Rn1
∂Swn
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∂P1

∂Rw1
∂Sw1
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∂P2
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· · · ∂Rw1
∂Swn−1
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∂Pn
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∂P1
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∂Sw1
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∂P2
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∂Sw2

· · · ∂Rn2
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∂Pn

∂Rn2
∂Swn

...
...

...
...

. . .
...

...
...

∂Rwn−1
∂P1

∂Rwn−1
∂Sw1

∂Rwn−1
∂P2

∂Rwn−1
∂Sw2

· · · ∂Rwn−1
∂Swn−1

∂Rwn−1
∂Pn

∂Rwn−1
∂Swn

∂Rnn
∂P1

∂Rnn
∂Sw1
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∂P2
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∂Sw2

· · · ∂Rnn
∂Swn−1
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∂Pn
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· · · ∂Rwn
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∂Pn

∂Rwn
∂Swn


,

(10.46)
A small digression on numerical solutions to linear systems is

in place here: Although the explicit expression (Eq. (10.45)) for the
updated values X(m+1) is mathematically correct and simple it is
not used in practice; Instead the update is formulated as

X(m+1) = X(m) + ∆(m+1) , (10.47)

where ∆(m+1) is the solution of a system of linear equations A system of linear equations is solved
for each Newton iteration

J(m)
R ∆(m+1) + R(m) = 0 . (10.48)

We will see below that the Jacobian is a sparse matrix with (a + 1)n
nonzero elements, where a is the average number of cell neighbors,
while the inverse Jacobian is dense with n2 elements. Sparse lin-
ear systems like Eq. (10.48) are solved using an iterative method1, 1 The iterations used by the linear

solver are known as inner- or linear-
iterations, and should not be confused
with the Newton iterations.

and there is no need to store the inverse Jacobian, which for large
systems would be prohibitively huge. The inverse Jacobian is also
actually found by solving a system of linear equations with n right
hand sides, while in Eq. (10.48) there is only one (−R(m)). The
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formulation as a system of linear equations is thus always more
efficient than Eq. (10.45).

The residuals for a given cell only depend on the state of that cell
and its neighbors. As a consequence, most of the elements in the
Jacobian matrix, which are partial derivatives of the residual in a
cell with respect to the state of another cell, are zero. The Jacobian
matrix JR has a block structure similar to the structure of the A-
matrix in Eq. (10.32) for the IMPES solution. The Jacobian matrix
consist of the blocks

Ji,j =

 ∂Rni
∂Pnj

∂Rni
∂Swj

∂Rwi
∂Pnj

∂Rwi
∂Swj

 , (10.49)

where Ji,j = 0 for all i ̸∈ {i − 1, i, i + 1}. This gives

JR =



J1,1 J1,2 0 0 0 · · · 0 0 0 0
J2,1 J2,2 J2,3 0 0 · · · 0 0 0 0
0 J3,2 J3,3 J3,4 0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 · · · 0 Jn−1,n−2 Jn−1,n−1 Jn−1,n

0 0 0 0 0 · · · 0 0 Jn,n−1 Jn,n


.

(10.50)
We can calculate the nonzero elements in the Jacobian matrix

from Eqs. (10.41), (10.42), and (10.43). We will use that the mobil-
ities are functions of saturation through the relative permeability,
but are independent of pressure for an incompressible system. The
porosity is also constant.

The derivatives of the residual of phase p with respect to pres-
sure are

∂Rpi

∂Pi−1
= Tλ

(m)
p

i− 1
2

∂Rpi

∂Pi
= −Tλ

(m)
p

i+ 1
2
− Tλ

(m)
p

i− 1
2

∂Rpi

∂Pi+1
= Tλ

(m)
p

i+ 1
2

, (10.51)

for all interior cells,
∂Rp1

∂P1
= −Tλ

(m)
p

1+ 1
2

∂Rp1

∂P2
= Tλ

(m)
p

1+ 1
2

, (10.52)

for the first cell, and

∂Rpn

∂Pn−1
= Tλ

(m)
p

n− 1
2

∂Rpn

∂Pn
= −2Tλ

(m)
p

n+ 1
2
− Tλ

(m)
p

n− 1
2

, (10.53)

for the last cell.
We will use upstream weighting for the mobilities. The mobility

at an interface is then a function of the saturation of the upstream
cell only. In general, what is the upstream cell is determined by the,
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dynamically changing, pressure field. In our simple one dimen-
sional case it is however always the left cell. The derivatives of the
residual of phase p with respect to saturation are then2 2 k′rp(·) is the derivative of the relative

permeability function.
∂Rpi

∂Swi−1

= −T
µ

k′rp(S
(m)
wi−1)

(
P(m)

i − P(m)
i−1

)
∂Rpi

∂Swi

=
T
µ

k′rp(S
(m)
wi )

(
P(m)

i+1 − P(m)
i

)
± ϕ

∆t

(± is + for non-wetting and − for wetting)

∂Rpi

∂Swi+1

= 0

, (10.54)

for all interior cells,

∂Rp1

∂Sw1

=
T
µ

k′rp(S
(m)
w1 )

(
P(m)

2 − P(m)
1

)
± ϕ

∆t
∂Rp1

∂Sw2

= 0
, (10.55)

for the first cell, and

∂Rpn

∂Swn−1

= −T
µ

k′rp(S
(m)
wn−1)

(
P(m)

n − P(m)
n−1

)
∂Rpn

∂Swn

=
2T
µ

k′rp(S
(m)
wn )

(
pr − P(m)

n

)
± ϕ

∆t

, (10.56)

for the last cell.
A solution, with Corey functions (Eq. (9.7)) for the relative

permeability, is shown in Fig. 10.3. This figure contains both the

Figure 10.3: A comparison
between a solution using a
Python script versus both the
analytical Buckley-Leverett
solution and a solution us-
ing OPM-Flow. The full-drawn
line is the Python solution,
the dashed line is OPM-Flow,
while the dash-dot line is the
Buckley-Leverett solution.
This plot is created by Fadhil
Berylian.

Buckley-Leverett solution, the solution from OPM-Flow, and the
solution using a fully implicit Python code. As can be observed,
the numerical methods are smeared out compared to the Buckley-
Leverett solution. However, there is small differences between the
Python code and OPM-Flow.

This plot indicates a common problem with the fully implicit
method: Numerical diffusion. Comparing with the result from



numerical methods for two phase flow 167

the IMPES method, the fully implicit method has more numerical
diffusion. This is consistent with the results obtained in section 9.4.

The fully implicit method is still preferable over the IMPES
method for most realistic reservoir simulation problems due to
less restrictive stability criteria. One can therefore use larger time
steps. However, the issue of numerical diffusion could make IMPES
preferable in special cases.

10.2 Compressible flow

For a compressible fluid, we cannot eliminate the density from the
two–phase flow equations. We will also include rock compressibil-
ity, so that the porosity is non-constant. Reservoir temperature is
assumed constant so density and viscosity are known functions of
pressure for each of the immiscible phases. We will in this section
also include capillary pressure.

In this chapter, and in chapter 9, we assume that the phases are
immiscible in the sense that their composition remain constant and
there is no exchange of components. In that case mass is conserved
for each phase separately. The flow equation for phase p is

∂

∂x

(
ρp

kkrp

µp

∂pp

∂x

)
=

∂

∂t
(
ρpϕsp

)
. (10.57)

Before we go into the details of the numerics, we can compare
Eq. (10.57) with the incompressible equation

∂

∂x

(
kkrp

µp

∂pp

∂x

)
= ϕ

∂

∂t
(
sp
)

. (10.58)

in order to anticipate how the introduction of compressibility will
affect the IMPES and fully implicit equations.

By comparing the left hand sides of Eqs. (10.57) and (10.58), we
see that the mobility, λp =

krp
µp

, which is a function of saturation

only, is replaced by λc
p =

ρpkrp
µp

, which is a function of both pressure
and saturation. This is of little consequence for the IMPES equa- Mobility is a function of both pressure

and saturationtions, since the mobility terms are evaluated explicitly. In the fully

implicit formulation extra terms, proportional to
dλc

p
dP , will be added

to the nonzero elements of the Jacobi matrix in Eqs. (10.51), (10.52),
and (10.53).

By comparing the right hand sides of Eqs. (10.57) and (10.58), we
see that the time discretisation will give extra terms proportional to
(Pi − Pt

i ).
In IMPES, the terms proportional to Pi will add to the diagonal

of the A matrix (Eq. (10.33)), while the terms proportional to Pt
i will

contribute to the e vector (Eq. (10.34)). For incompressible flow, the
e vector only depends on the boundary conditions and the pressure
solution is independent of the current pressure. For compressible
flow the pressure solution will depend on current pressure, since
the e vector contains the current pressure.
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In the fully implicit formulation, the extra terms will add con-

tributions to the diagonal element
∂Rni
∂Pni

of the Jacobian matrix
(Eqs. (10.49), and (10.50)). The structure, and complexity, of the
equation system remain unchanged.

The left hand side similar to the incompressible case (Eq. (10.10));

∂

∂x

(
kλc

p
∂pp

∂x

)
≃ Tλc

pi+1/2

(
Ppi+1 − Ppi

)
− Tλc

pi.1/2

(
Ppi − Ppi−1

)
,

(10.59)
with the generalized mobility

λc
p =

ρpkrp

µp
. (10.60)

Now we will investigate the right hand side of Eq. (10.57). Both
the density ρp and the porosity ϕ are pressure dependent, and
therefore variables with respect to the time derivative.

We start by writing out the partial as:

∂

∂t
(
ρpϕsp

)
= ρpϕ

∂sp

∂t
+ sp

∂

∂t
(
ρpϕ

)
. (10.61)

Following the same procedure as in Chap. 9, we can write

∂

∂t
(
ρpϕ

)
= ρpϕ

(
1
ϕ

∂ϕ

∂pp
+

1
ρp

∂ρp

∂pp

)
∂pp

∂t

= ρpϕ
(
cϕ + cp

) ∂pp

∂t

, (10.62)

where we have introduced the rock compressibility

cϕ =
1
ϕ

∂ϕ

∂p
, (10.63)

and the fluid phase compressibility Compressibility of fluid and rock

cp =
1
ρp

∂ρp

∂p
. (10.64)

Applying the backward difference quotient for the time deriva-
tives we get(

∂

∂t
(
ρpϕsp

))
i
≃ ρpϕ

∆t

(
Spi − St

pi

)
+

spρpϕ(cϕ + cp)

∆t

(
Ppi − Pt

pi

)
,

(10.65)
which can be written as(

∂

∂t
(
ρpϕsp

))
i
≃ 1

∆t

(
Σpi

(
Spi − St

pi

)
+ Πpi

(
Ppi − Pt

pi

))
,

(10.66)
where

Σp = ρpϕ , (10.67)

and
Πp = spρpϕ(cϕ + cp) . (10.68)

To simplify the notation we will also define

Λn = ∆tTλc
n . (10.69)
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Using Eqs. (10.59) and (10.66) for the left- and right hand side of
Eq. (10.57), we then get the discrete expression

Λpi+1/2

(
Ppi+1 − Ppi

)
− Λpi−1/2

(
Ppi − Ppi−1

)
=

Σpi

(
Spi − St

pi

)
+ Πpi

(
Ppi − Pt

pi

) . (10.70)

We have one equation (Eq. (10.70)) for each phase per grid cell,
and we can use that so + sw = 1, and that po − pw = Pc(sw), in order
to get one unknown saturation and one unknown pressure per grid
cell. Thus we have the same number of equations as unknowns.

In petroleum applications it is common to use water saturation
Sw, and oil pressure Po, as unknowns. Following that convention,
we will use wetting saturation Sw and non-wetting pressure Pn, and
we will drop the phase subscripts

Swi → Si

Sni → 1 − Si

Pwi → Pi − Pc(Si)

Pni → Pi

. (10.71)

The two resulting discrete equations are

Λni+1/2 (Pi+1 − Pi)− Λni−1/2 (Pi − Pi−1) =

− Σni

(
Si − St

i
)
+ Πni

(
Pi − Pt

i
) , (10.72)

and
Λwi+1/2

(
Pi+1 − Pi − Pci+1 + Pci

)
−Λwi−1/2

(
Pi − Pi−1 − Pci + Pci−1

)
=

Σwi

(
Si − St

i
)
+ Πwi

(
Pi − Pt

i
) . (10.73)

If we multiply Eq. (10.72) with Σwi and Eq. (10.73) with Σni , and
add the two equations, we get Pressure equation(

Σwi Λni+1/2 + Σni Λwi+1/2

)
(Pi+1 − Pi)

−
(
Σwi Λni−1/2 + Σni Λwi−1/2

)
(Pi − Pi−1)

−Σni Λwi+1/2

(
Pci+1 − Pci

)
+ Σni Λwi−1/2

(
Pci − Pci−1

)
=

(Σwi Πni + Σni Πwi )
(

Pi − Pt
i
)

. (10.74)

In IMPES, saturations, capillary
pressures, and mobilities are evaluated
explicitly.

In IMPES, we evaluate all the saturations at the current time step.
The capillary pressures in Eq. (10.74) can thus also be treated as
explicitly known. We will also evaluate the mobilities, λc

p explicitly.
In this case, Eq. (10.74) is an equation where only pressure is un-
known. After solving for pressure, we can then apply Eq. (10.72) to
find the updated saturation in each cell. If we in addition also treat
the coefficients Σp and Πp explicitly, the system of equations (One
equation (Eq. (10.74) for each cell plus boundary conditions) is also
linear. The linear system can be expressed as Linearized pressure equation in IMPES

(A − C) · P + C · Pt + e = 0 , (10.75)
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where the vector e contain source/sink-terms and capillary pres-
sure contributions, and he matrix A has the same sparse structure
as in the incompressible case. C is a diagonal matrix which is pro-
portional to the compressibility, while Pt is the pressures at the
previous time step.

Note that the relative change in Σp and Πp (Eqs. (10.67) and
(10.68))) during time step is proportional to cp∆p. This is also the
size of the extra terms C ·

(
P − Pt) in Eq. (10.75) compared with

Eq. (10.32) in the incompressible case. Thus, it is not completely
consistent to treat Σp and Πp explicitly. The solution of the pres-
sure equation will normally require an iterative approach also in
IMPES. The nonlinearity is however usually not very strong (See
Section 10.2.1), and the linear system is just half the size of the
fully implicit system. An IMPES time step thus requires much less
CPU time than a fully implicit time step.

10.2.1 Models for density and porosity

A model for the density of a substance as a function of pressure,
and in general of temperature and composition, is called an equa-
tion of state (EOS). Simple EOS models for oil and gas commonly
used in the petroleum industry was briefly discussed in Section 7.2.
We will expand on these here, and derive the corresponding coeffi-
cients in the numerical formulation.

Porosity is usually modelled with a reference porosity, ϕ0, and a
constant compressibility, cϕ, (Eq. (7.6))

ϕ(p) = ϕ0 exp
(
cϕ(p − pr)

)
≈ ϕ0

(
1 + cϕ(p − pr)

) . (10.76)

The approximate linear model here, and in subsequent equations,
may be used in order to avoid the CPU-heavy evaluations of the
exponential.

In the black oil model3, the oil and gas densities are expressed 3 The black oil model is explained in
detail in Chapter 11in terms of formation volume factors, B. These are the ratios of

fluid volumes at reservoir pressure and temperature and volumes
at standard conditions. In the symmetric black oil model, where the
gas component can dissolve in reservoir oil, and the oil component
can dissolve in reservoir gas, the oil density is

ρo(p, Rs) =
ρos + ρgsRs

Bo(p, Rs)
, (10.77)

and the gas density is

ρg(p, Rv) =
ρgs + ρosRv

Bg(p, Rv)
. (10.78)

Here, ρos is the density of oil at standard conditions4, ρgs is the 4 Oil at standard conditions is by defi-
nition a fluid with 100% oil componentdensity of gas at standard conditions5. The solution ratios (Rs is
5 Gas at standard conditions is by
definition a fluid with 100% gas
component

the solution-gas-oil ratio, and Rv is the solution-oil-gas ratio) are
proxies for the oil and gas composition. In this chapter we con-
sider phases with constant composition only, Rs and Rv are thus
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constants. The density model for the hydrocarbon phases are then
simply

ρp(p) =
Cp

Bp(p)
. (10.79)

The formation volume factors are typically supplied to the reservoir
simulator in the form of lookup tables.

Water density is usually modelled with a reference density at a
reference pressure and a constant compressibility

ρw(p) =
ρws

Bw0
exp(+cw(p − pr))

≈ ρws

Bw0
(1 + cw(p − pr))

. (10.80)

If we use the above density models, the coefficients in Eq. (10.72)
and (10.73) are6 6 Note that the “approximate” ex-

pressions in Eq. (10.81) are the exact
expressions for the linear models of
Eqs. (10.76) and (10.80) used as re-
placement for the exponentials in the
constant compressibility case.

Σw =
ρwsϕ0

Bw0
exp

(
(cw + cϕ)(p − pr)

)
≈ ρwsϕ0

Bw0
(1 + cw(p − pr))

(
1 + cϕ(p − pr)

)
Σo =

Coϕ0

Bo(p)
exp

(
cϕ(p − pr)

)
≈ Coϕ0

Bo(p)
(
1 + cϕ(p − pr)

)
Πw = sw(cϕ + cw)Σw

≈ sw

(
cϕ

1 + cϕ(p − pr)
+

cw

1 + cw(p − pr)

)
Σw

Πo = (1 − sw)

(
cϕ − 1

Bo

∂Bo

∂p

)
Σo

≈ (1 − sw)

(
cϕ

1 + cϕ(p − pr)
− 1

Bo

∂Bo

∂p

)
Σo

. (10.81)

As also Λp on the left hand side of Eqs. (10.72) and (10.73) is pro-
portional to density, we see that all the constants ρws, Bw0, and
Co, will actually cancel out from the final versions of Eqs. (10.72),
(10.73), and (10.74).

10.2.2 Mass conservative finite volume formulation

The formulation leading up to Eqs. (10.72) and (10.73) is not fully
mass conservative. In order to derive mass conservative equations
we will now reformulate the problem using a finite volume formu-
lation as explained in Section 7.2.

Applying the backward difference quotient for the time deriva-
tive on the right hand side of Eq. (10.57) we get(

∂

∂t
(
ρpϕsp

))
i
≃ 1

∆t
(
ρp(Pi)ϕ(Pi)Spi − ρp(Pt

i )ϕ(Pt
i )S

t
i
)

, (10.82)

and when using Eqs. (10.59) and (10.82) for the left- and right hand
side of Eq. (10.57), we get the discrete expression

∆tTλc
pi−1/2

(
Ppi−1 − Ppi

)
− ∆tTλc

pi+1/2

(
Ppi − Ppi+1

)
=

ρp(Pi)ϕ(Pi)Spi − ρp(Pt
i )ϕ(Pt

i )S
t
pi

. (10.83)
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The left hand side is the mass that flows into a grid cell during a
time step through the left boundary, minus the mass that flows
out of the cell through the right boundary. The right hand side is
the mass in the cell at the end of the time step minus the mass in
the cell at the beginning of the time step, that is the mass accumu-
lated in the cell during a time step. This is exactly the finite volume
formulation.

We have one equation (Eq. (10.83)) for each phase per grid cell,
and we can use that sn + sw = 1, and that pn − pw = Pc(sw), in order
to get one unknown saturation and one unknown pressure per grid
cell. We will use the same substitutions as before (Eq. (10.71)), with
wetting saturation Sw, and non-wetting pressure Pn, as unknowns.

To simplify the notation we will define

Λn = ∆tTλc
n . (10.84)

We then have the two discrete equations

Λoi−1/2 [Pi−1 − Pi]− Λoi+1/2 [Pi − Pi+1] =

ρn(Pi)ϕ(Pi)(1 − Si)− ρn(Pt
i )ϕ(Pt

i )(1 − St
i )

, (10.85)

and

Λwi−1/2 [Pi−1 − Pi + Pc(Si−1)− Pc(Si)]

−Λwi+1/2 [Pi − Pi+1 + Pc(Si)− Pc(Si+1)] =

ρw(Pi)ϕ(Pi)Si − ρw(Pt
i )ϕ(Pt

i )S
t
i

. (10.86)

In IMPES, we evaluate all the saturations at the current time step.
The capillary pressures in Eq. (10.86) can thus also be treated as
explicitly known. We will also evaluate the mobility terms, Λp, IMPES: Saturations, capillary pres-

sures, and mobilities are evaluated
explicitly.

explicitly with upstream weighting.
By multiplying the oil equation with ρw(Pi), and the water equa-

tion with ρn(Pi), and adding the two, we get the pressure equation
IMPES pressure equation[

Λoi−1/2 ρw(Pi) + Λwi−1/2 ρn(Pi)
]
[Pi−1 − Pi]

−
[
Λoi+1/2 ρw(Pi) + Λwi+1/2 ρn(Pi)

]
[Pi − Pi+1]

+ ρn(Pi)
(

Λwi−1/2 Pt
ci−1

−
(
Λwi−1/2 − Λwi+1/2

)
Pt

ci
+ Λwi+1/2 Pt

ci+1
)
)

=

ϕ(Pi)ρw(Pi)ρn(Pi)− ϕ(Pt
i )
[
ρw(Pi)ρn(Pt

i )(1 − St
i ) + ρn(Pi)ρw(Pt

i )S
t
i
]

.

(10.87) The compressible pressure equation is
non linearIn the incompressible case, all densities are constant, and we get

a linear equation system. Also, the right hand side of Eq. (10.87) is
zero as we had in Eq. (10.32). The compressible pressure equation is
nonlinear and must be solved using an iterative scheme. However,
compared to a fully implicit formulation, where both pressure
and saturation are found with an iterative method, the size of the
equation system is half. The nonlinearity is also not very strong,
at least not for liquid–liquid systems, so the number of iterations
needed to reach convergence will be small.
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10.3 Two-phase flow in OPM-Flow

The IMPES formulation is not implemented in the reservoir sim-
ulator OPM-Flow. If you use the keyword IMPES in the RUNSPEC

section, it will read the key-word, but it will not change the solu-
tion method, thus the solution method will still be fully implicit.
In the following, we will simulate a similar case as the 1D model
described in Chap. 6 using OPM-Flow. This model needs to be ex-
tended to two phases. We will use the Corey curves described
before, where both exponents are 2, and krwo = 0.4. This can be
tabulated as:

SWOF

0.2 0.0 1.0 0.0

0.23158 0.00111 0.89751 0.0

0.26316 0.00443 0.80055 0.0

0.29474 0.00997 0.70914 0.0

0.32632 0.01773 0.62327 0.0

0.35789 0.0277 0.54294 0.0

0.38947 0.03989 0.46814 0.0

0.42105 0.05429 0.39889 0.0

0.45263 0.07091 0.33518 0.0

0.48421 0.08975 0.27701 0.0

0.51579 0.1108 0.22438 0.0

0.54737 0.13407 0.17729 0.0

0.57895 0.15956 0.13573 0.0

0.61053 0.18726 0.09972 0.0

0.64211 0.21717 0.06925 0.0

0.67368 0.24931 0.04432 0.0

0.70526 0.28366 0.02493 0.0

0.73684 0.32022 0.01108 0.0

0.76842 0.359 0.00277 0.0

0.8 0.4 0.0 0.0 /

While the simulator OPM-Flow handles compressible fluids, we
will compare to our fluids used in the IMPES code implemented in
Python above, thus we want to keep the fluids quite incompressible:

PVTW

-- REF.PRES. REF. FVF COMPRESSIBILITY REF.VISC.

-- -> VISCOSIBILITY

-- (bar) (m3/m3) (1/bar) (cP) (1/bar)

150 1.01 1.0e-4 1.0 0.0e+0 /

PVDO

--

--

-- PRES. FVF. VISC.

20.68 1.01 0.99

55.16 1.00 1.00

551.58 0.99 1.01

/

ROCK

-- REF.PRES COMPRESSIBILITY

-- (bars) (1/bars)

150 0.0e-6 /
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As this is a two phase case, we define the initial saturation:

SWAT

1.0 101*0.2

/

To keep the simulation model numerically stable, we want to
extend the grid cells perpendicular to the flow direction, so that the
grid cells get a larger volume:

DX

-- There are in total 102 cells with length 2.0m

-- in x-direction. The main part of the model is

-- the 100 cells in the middle. The two outer

-- cells are dummy cells with high permeability

-- to distribute the flow from the wells to the

-- full cross-section.

102*2.0 /

DY

102*10.0 /

DZ

102*10.0 /

To get a flow rate in the order of a meter per day, we then use an
injection rate of

Q = ϕAq = 0.2 · 10 m · 10 m · 1 m/d = 20 m3/d . (10.88)

WCONINJE

-- Item #:1 2 3 4 5-6 7

’INJW’ ’WATER’ ’OPEN’ ’RESV’ 1* 20.0 /

/

We run this input deck using OPM-Flow. The resulting saturation
versus distance is plotted in Fig. 10.4. This plot also include the
Buckley-Leverett result for the same system. We see that the simu-
lation results is much more smoothed out around the shock front
than what is predicted by the Buckley-Leverett solution.
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Figure 10.4: The simulation re-
sults from OPM-Flow compared
to the Buckley-Leverett solu-
tion. We have plotted one line
for each restart step of 10 d.

To have a simulation comparable to the Python implementation
of the IMPES method, we want to have a comparable amount of
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time steps. The Python implementation used time steps of size
1 × 10−3 s with a flow rate of 1 m/s. This would give approximately
1000 times steps to reach the time it takes to move the front through
the model. In our simulation model we have a flow rate around
1 m/d. As the model is 200 m long, we would need a time step of
0.2 d to have approximately 1000 time steps for the time it takes to
move the shock front through the model. To reduce the time step to
0.2 d, we use the following command line argument:

flow TWOPHASE1D.DATA --solver-max-time-step-in-days=0.2
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Figure 10.5: The simulation
results from OPM-Flow com-
pared to the Buckley-Leverett
solution, when we have limited
the time steps to 0.2 d. We have
plotted one line for each restart
step of 10 d.

The resulting saturation versus distance is plotted in Fig. 10.5.
We see that the reduced time steps gives a sharper shock front.
However, the plot also indicate that we have larger uncertainty
behind the front, where the saturation is too high compared to the
Buckley-Leverett solution. As the saturation is too large behind
the front, the front ends up moving to slow compared to Buckley-
Leverett solution. The saturation profile is not smooth either. Thus,
while the smaller time steps improves on the shock front sharpness,
it depreciate the solution with respect to other features.

10.4 Exercises

Exercise 10.1 Use a Python script for simulating 1D incompressible
IMPES. The basic data is given in Table 10.1.

SPE Metric SI
l 200 m 200 m
µw 1 cP 1 × 10−3 Pa s
µn 2 cP 2 × 10−3 Pa s
ϕ 0.2 0.2
nw 2.0 2.0
nn 2.0 2.0
krwo 0.4 0.4
qt 0.2 m/d 2.315 × 10−6 m/s

Table 10.1: Basic data for ex-
ample.

a) Plot the saturation versus distance from inlet for a set of times
that illustrate how the fluid front moves through the medium.

b) Do a sensitivity study on the Corey parameters to investigate
how the relative permeability curves influence the displacement
process. Discuss your results with respect to the

• The fractional flow curve

• The shock front saturation

c) Try to change the mobility weighting. At which weighting does
your simulation break down, and why?
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Exercise 10.2 Write a Python script for simulating incompressible
fully implicit with upstream weighting.

a) Compare the solution for IMPES and fully implicit for different
number of grid cells and time step length using the same data as
in Exersise 10.1



11
Black oil simulations

Were we a rational society, a virtue of
which we have rarely been accused, we
would husband our oil and gas resources.

Marion King Hubbert

In the previous chapter we discussed the simulation of flows
with two phases of constant composition. This is relevant for
water–gas systems, such as gas reservoirs with aquifer support
or produced with support from water injection, and simple water–
air systems in hydrology. It is also relevant for oil–water systems,
such as oil reservoirs produced by water injection. If we ignore the
effect of the dissolution of CO2 in formation water, the methods can
also be used to describe injection of CO2 into aquifers.

In this chapter we will extend the flow description to situations
where the composition of the phases can change. This includes
the production of oil reservoirs by pressure depletion, where the
oil composition will change when pressure falls under the bubble
point, the production of oil reservoirs supported by gas injection,
and the modelling of CO2 sequestration in aquifers, where the
dissolution of CO2 into the water may be important for the long
term behavior. We will however only discuss the absolute simplest
model for the description of compositional change; the black oil
model.

11.1 The black oil model

Real subsurface systems are multi component systems with a large
number of molecular species. Such systems typically have a rich
phase behavior as a function of pressure, temperature and composi-
tion. Extended knowledge of this behavior is of crucial importance
for the design and operation of top-side equipment, e.g., design and
operation of separators to optimize liquid production and avoid
precipitation of waxes and asphaltenes. The full space of pres-
sure and composition is however far from being visited in the sub-
surface reservoir, even for the most exotic of recovery processes.
Reservoir temperature can also usually be treated as being constant,
despite possible strong temperature gradients around injectors.
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A simplified description is thus possible, and is also required for
reservoir simulation.

The black oil model is a two component model for the descrip-
tion of the phase behavior and density of a fluid system. In its
original form, it is based on direct tabulation of measured volume
ratios in a fairly simple pressure depletion experiment, and gives a
good description for oil reservoirs produced by pressure depletion.
The model has been extended also to other scenarios, and the black
oil model is by far the most common phase behavior description
employed in petroleum reservoir simulation.

liquid sample
Critical point

Two phase region

Liquid Gas

Mass fraction of volatile component

Pr
es

su
re

Figure 11.1: Sketch of phase
behavior for a two component
system at constant temper-
ature. In the pressure range
shown, one (“non-volatile”)
component is a liquid, while
the other (“volatile”) compo-
nent is a gas. The bubble point
line is shown in blue, and the
dew point line in red. A liquid
with a given composition at a
pressure above bubble point
is shown as a blue dot. Other
lines and arrows are explained
in the main text.

The general phase behavior for a two component system at con-
stant temperature is illustrated in Fig. 11.1. Dependent on the total
fraction of each component, the system can be either a gas or a liq-
uid. We assume that one component is non-volatile, that is the sin-
gle component fluid is in a liquid phase at all pressures of interest,
and also at standard conditions. The other component is volatile,
and the corresponding single component system is in the gas phase
in the same pressure range, and also at standard conditions. At in-
termediate mass fractions, the system is separated into two phases.
At a given pressure, the gas and liquid are at equilibrium with dif-
ferent compositions, given respectively by the composition on the
dew point line (red) and on the bubble point line (blue).

If we take a liquid sample (blue dot) and add the volatile com-
ponent, the system will move to the right in the phase diagram
(horizontal arrow), and at some point reach the bubble point line
where gas, with composition given by the dew point line, will ap-
pear. Further addition of the volatile component will not change the
composition of the liquid or gas, only the relative amount of each
phase. Also, if we reduce the pressure of the liquid sample (vertical
arrow), gas will appear when we reach the bubble point line. The
composition of the gas is again given by the composition at the dew
point line. However, if we reduce the pressure further, we will not
only get more of the gas phase, but the composition of the gas and
liquid will also change, as determined by the bubble point and dew
point lines.

In the two phase region, the properties
of liquid and gas is a function of
pressure only.

In a two component system, the properties of the single phase
liquid is a function of pressure and the fraction of volatile com-
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ponent, and the properties of single phase gas is a function of the
pressure and the fraction of non-volatile component. However, in
the two phase region the two phases will be in equilibrium, there-
fore the properties of liquid and gas is a function of pressure only.

The black oil model is a model for a two component system
where the non-volatile component is called the oil component, and
the volatile component is called the gas component. The liquid
phase is usually called the oil phase, and the gas phase is usually
called the gas phase. That the components and phases have iden-
tical names is unfortunate and definitely is confusing for students
and professionals alike.1 While the black oil model can be applied 1 To distinguish the phases from the

components, sometimes the term
“oleic phase” is used for the liq-
uid phase (e.g., in (Lie, 2016)), and
“gaseous phase” for the gas phase.
In petroleum reservoirs we also have
brine, which is an “aqueous phase”.

to other systems with other phases and components, e.g., a CO2-
brine system, in the following we will follow the traditional use of
the black oil model and use gas and oil.

Note that the oil and gas components are not directly associated
with any actual hydrocarbon species. As used in most reservoir
simulation models, the oil component is associated with the sales,
or stock tank, oil produced when the production stream is pro-
cessed through a given separator system, and the gas component is
associated with the corresponding produced sales gas. The phase
behavior of a black oil model is in principle identical to the two
component system described above (Fig. 11.1), but as implemented
it has some additional restrictions. In particular, the black oil model
does not easily accommodate a critical point.

Vor

Vos Vgs

Vgr

Vos Vgs Figure 11.2: Illustration of
reservoir oil phase and gas
phase (lower rectangles) ver-
sus oil phase and gas phase
at standard conditions (upper
rectangles).

The black oil model is based on volumes and volume ratios. As The black oil model is expressed in
terms of volume ratiosillustrated in Fig. 11.2, let Vor denote the volume of liquid phase

at reservoir conditions. When brought to surface, this volume of
liquid phase separates into a volume Vos of liquid with 100% oil
component at standard conditions and a volume Vgs of gas with
100% gas component at standard conditions. In this chapter, an upper index (su-

perscript) represents the component,
while a lower index (subscript) repre-
sent the phase.

Let mo and mg be the mass of the oil Vos and gas Vgs at standard
conditions from the oil Vor at reservoir conditions. Then the density
of the liquid phase at reservoir conditions is ρor = ρo = (mo +

mg)/Vor, while the density of liquid and gas at standard conditions
are ρos = mo/Vos and ρgs = mg/Vgs, respectively. We can then write

ρo(p, Rs) =
mo + mg

Vor
=

mo
Vos

+
mg
Vgs

Vgs
Vos

Vor
Vos

=
ρos + ρgsRs

Bo(p, Rs)
, (11.1)

where Bo = Vor/Vos, and Rs = Vgs/Vos. This gives the following
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equation for the liquid phase density at reservoir conditions:

ρo(p, Rs) =
ρos + ρgsRs

Bo(p, Rs)
. (11.2)

Using equivalent derivations, we obtain the following equation for
the gas phase density

ρg(p, Rv) =
ρgs + ρosRv

Bg(p, Rv)
. (11.3)

Thus the composition of the oil phase is expressed through the
solution-gas-oil ratio, Rs, and the composition of the gas phase is Rs is a proxy for oil phase composi-

tion.expressed through the solution-oil-gas ratio, Rv. For the liquid and
Rv is a proxy for gas phase composi-
tion.gas density at reservoir conditions we also need the liquid and gas

formation volume factors Bo and Bg. Formation volume factor

Thus, we see that in the black oil model, the volume ratios Bo,
Bg, Rs, and Rv are defined as follows:

Model definitions of the volume ratios
• Take a volume of reservoir oil Vor and separate out the gas com-

ponent. At standard conditions, the remaining oil has volume
Vos, and the separated gas has volume Vgs. Then Bo = Vor/Vos,
and Rs = Vgs/Vos.

• Take a volume of reservoir gas Vgr and separate out the oil com-
ponent. At standard conditions, the remaining gas has volume
Vgs, and the separated oil has volume Vos. Then Bg = Vgr/Vgs,
and Rv = Vos/Vgs.

These definitions are approximately the same as the operational
definitions:

Operational definitions of the volume
ratios• Take a volume of reservoir oil Vor and process it through the

separator system where it separates into a sales-oil and a sales-
gas. The sales-oil has volume Vos, and the sales-gas has volume
Vgs. Then Bo = Vor/Vos, and Rs = Vgs/Vos.

• Take a volume of reservoir gas Vgr and process it through the
separator system where it separates into a sales-oil (condensate)
and a sales-gas. The sales-gas has volume Vgs, and the sales-oil
(condensate) has volume Vos. Then Bg = Vgr/Vgs, and Rv =

Vos/Vgs.

We see from the model definitions of volume ratios and densities
that the mass fraction of gas (light component) in the oil phase is Volume ratios translated into mass

fractions

xg
o =

mg

mo + mg
=

ρgsRs

ρos + ρgsRs
, (11.4)

and the mass fraction of gas (light component) in the gas phase is

xg
g =

ρgs

ρgs + ρosRv
. (11.5)

Eqs. (11.2), (11.3), (11.4), and (11.5) serve as a direct link between
the black oil model expressed in terms of pressure and volume
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ratios, and the general two component model expressed in terms of
pressure and mass fraction.

The black oil model is input to
OPM-Flow in the form of tables.

In reservoir simulators, the black oil model is invariably pro-
vided in the form of tables. This is also the case for OPM-Flow. The
format of these tables and how they relate to the phase diagram
and the density calculations is described below.

The properties of the oil (liquid) phase, and the location of the
bubble point line, is defined in a table provided under the keyword
PVTO. An example is shown if Fig. 11.3. Pairs of values in the first

PVTO

-- Rs P Bo mu_o

44.09 110.00 1.16437 0.880

185.00 1.14973 1.012

210.00 1.14547 1.056 /

70.14 170.00 1.22704 0.698

220.00 1.21558 0.759

270.00 1.20555 0.821 /

99.39 230.00 1.29586 0.622

280.00 1.28300 0.661

330.00 1.27171 0.699 /

130.23 285.33 1.36737 0.5335

335.33 1.35313 0.5638

385.33 1.34059 0.5934 /

150.01 317.23 1.41282 0.4614

367.23 1.39773 0.4863

417.23 1.38443 0.5107 /

179.63 360.80 1.48028 0.39503

410.80 1.46398 0.41502 /

209.18 399.99 1.54700 0.35239

424.99 1.53800 0.36089 /

/

Figure 11.3: Example of in-
put to OPM-Flow for the oil
phase properties. Simplified
data from the Norne model
(Ch. 14).

two columns (Rs and p) define the bubble point line. Correspond-
ing values in the third (Bo) and fourth (viscosity, µo) column, are
oil phase properties at the bubble point, and thus also in the two
phase region. Lines where Rs is missing contain oil properties in
the single phase liquid region (undersaturated oil) at the pressure
given in the second column and Rs given by the nearest value above
in the first column.

The properties of the gas phase, and the location of the dew
point line, is defined in a table provided under the keyword PVTG.
An example is shown if Fig. 11.4. Pairs of values in the first two
columns (p and Rv) define the dew point line. Corresponding
values in the third (Bg) and fourth (viscosity, µg) column, are gas
phase properties at the dew point, and thus also in the two phase
region. Lines where pressure is missing contain gas properties in
the single phase gas region at Rv given in the second column, and
pressure given by the nearest value above in the first column.

In many cases, a simplified version of the black oil model with
dry gas, is sufficient. In the dry gas version, it is assumed that the Dry gas model: Rv = 0, and no single

phase gas region
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PVTG

-- p Rv Bg mu_g

110.00 0.00000798 0.011072 0.01609

0.00000000 0.011081 0.01605 /

170.00 0.00001786 0.007156 0.01834

0.00000000 0.007172 0.01819 /

230.00 0.00003767 0.005402 0.02121

0.00001883 0.005412 0.02095

0.00000000 0.005422 0.02071 /

250.80 0.00004756 0.005013 0.02234

0.00002378 0.005022 0.02197

0.00000000 0.005032 0.02162 /

285.33 0.00006853 0.004511 0.02438

0.00003427 0.004518 0.02375

0.00000000 0.004525 0.02315 /

317.23 0.00009313 0.004165 0.02648

0.00004657 0.004166 0.02549

0.00000000 0.004169 0.02456 /

346.80 0.00012100 0.003917 0.02863

0.00006050 0.003911 0.02719

0.00000000 0.003906 0.02585 /

374.31 0.00015188 0.003735 0.03087

0.00000000 0.003705 0.02703 /

399.99 0.00018571 0.003598 0.03320

0.00000000 0.003545 0.02810 /

/

Figure 11.4: Example of in-
put to OPM-Flow for the gas
phase properties. Simplified
data from the Norne model
(Ch. 14).

reservoir gas contain no dissolved oil so that Rv is always zero.
In this case, there is no single phase gas region in the phase dia-
gram. Dry gas properties as a function of pressure is provided to
OPM-Flow with the keyword PVDG.

The component mass densities, needed for the calculation of
reservoir mass densities, are defined using the keyword DENSITY.
An example is shown in Fig. 11.5.

DENSITY

-- Oil Water Gas

859.5 1033.0 0.854 /

Figure 11.5: Example of input
to OPM-Flow for component
mass densities. Data from the
Norne model (Ch. 14).

Figures 11.6 and 11.7 show the pressure–mass-fraction phase
diagrams that correspond to the tables in Figs. 11.3, 11.4, and 11.5.
These figures should be compared with the general two–component
phase diagram of Fig. 11.1. In the two–phase region, the phase
properties (here gas phase and oil phase density) are only a func-
tion of pressure, given by the properties of the equilibrium fluids
on the bubble and dew point lines. Note also that the oil density is
decreasing with increased pressure, while the gas density is increas-
ing. This is consistent with a critical point, where the gas and oil
phase are identical at high pressure.
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Figure 11.6: Phase diagram
corresponding to the simpli-
fied Norne black oil tables in
Figs. 11.3 and 11.4. Bubble
point line in blue, and dew
point line in red. Contours
and colors show the volume
fraction of oil phase in the
two–phase region. The dotted
line in the single phase oil re-
gion show the region that are
covered by the property data
(Bo, and µo) for undersaturated
oil in the PVTO table. Properties
are extrapolated outside of this
region.
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Figure 11.7: Density of the oil
and gas phase from the simpli-
fied Norne black oil tables in
Figs. 11.3 and 11.4. In the two–
phase region, the properties
are only a function of pressure.

11.2 Finite volume discretization

In this section we will develop a finite volume discretization using
the two-point flux approximation for a general grid, as described
in section 7.2.1. We will also include gravity terms, which we have
ignored in the earlier numerics chapters.

In previous chapters we have assumed that the composition
of the flowing phases remain constant, and we could write one
mass conservation equation per phase (Eq. 10.83). For gas–liquid
systems described by the black oil model, the gas and liquid phase
compositions are no longer constant, and we will need one mass
conservation equation per component. In petroleum reservoirs we
will always have water present in addition to oil and gas, both as a
phase (formation water with dissolved salts), and as a component.
In the black oil model, the water component and the dissolved salts
are not present in the gas and oil phase, and the water composition
is assumed constant. The mass conservation of water can thus be
treated as before. In order to simplify the presentation, we will, in For water, component conservation is

equivalent to phase conservation.this section, treat the water as immobile. Thus, we will concentrate
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our derivations on one liquid (oil) and one gas phase only. We will
also, for the same reason, assume that the capillary pressures (gas–
oil and oil–water) are zero.

Similar to the mass balance per phase (Eq. 10.83), we have one
mass balance equation per component. The oil (non-volatile) com-
ponent is distributed in both the liquid and the gas phase. The
mass of oil component Mo in a grid cell with bulk volume V is thus Remember that we use upper-case

letters for numerical grid cell values.

Mo = ρosVϕ

(
1
Bo

So +
Rv

Bg
Sg

)
, (11.6)

where the first term is the mass of oil component in the oil phase,
and the second term is the mass of oil component in the gas phase.
The accumulation term is the change of component mass over a
time step. The black oil model is expressed in terms of volumes,
and both this accumulation term and the flow terms for oil are
proportional to ρos. Thus we can eliminate this constant from the
equations and work with component volumes at standard condi-
tions instead: Conserved quantity: Component

volume at standard conditionsVo = Vϕ

(
1
Bo

So +
Rv

Bg
Sg

)
. (11.7)

The volume of gas component is distributed over the oil and gas
phase, giving

Vg = Vϕ

(
1

Bg
Sg +

Rs

Bo
So

)
. (11.8)

If we ignore capillary pressure, the generalized Darcy law for
phase n is (see Eq. 3.17)

qn = − kkrn

µn
(∇p + ρng∇z) . (11.9)

The oil flux carries dissolved gas, and the gas flux carries dissolved
oil, so that the component fluxes are

qo =
1
Bo

qo +
Rv

Bg
qg

qg =
1

Bg
qg +

Rs

Bo
qo

, (11.10)

and we may combine Eqs. 11.9 and 11.10 to get

qo = −k
[

1
Bo

kro

µo
+

Rv

Bg

krg

µg

]
∇p − k

[
1
Bo

ρokro

µo
+

Rv

Bg

ρgkrg

µg

]
g∇z

qg = −k
[

1
Bg

krg

µg
+

Rs

Bo

kro

µo

]
∇p − k

[
1

Bg

ρgkrg

µg
+

Rs

Bo

ρokro

µo

]
g∇z

,

(11.11)
If we define phase mobilities2 as 2 If we ignore the gravity term, we see

that we can define component mobilities

λo =
1
Bo

kro

µo
+

1
Bg

Rvkrg

µg

and

λg =
1

Bg

krg

µg
+

1
Bo

Rskro

µo
.

Eq. (11.13) is in that case equivalent to
the equation for compressible immisci-
ble flow, Eq. (10.59), substituting mass
flow with component flow.

λn =
1

Bn

krn

µn
, (11.12)

then Eqs. (11.11) can be expressed as

qo = −k
[
λo + Rvλg

]
∇p − k

[
ρoλo + ρgRvλg

]
g∇z

qg = −k
[
λg + Rsλo

]
∇p − k

[
ρgλg + ρoRsλo

]
g∇z

. (11.13)
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In the two point flux approximation, using Eq. (11.13), the net
component flow into grid cell i during a time step ∆t is

∆Vo
i = ∆t ∑

j
Tji
[(

λo + Rvλg
) (

Pj − Pi
)
+
(
ρoλo + ρgRvλg

)
g
(
zj − zi

)]
∆Vg

i = ∆t ∑
j

Tji
[(

λg + Rsλo
) (

Pj − Pi
)
+
(
ρgλg + ρoRsλo

)
g
(
zj − zi

)] ,

(11.14)
where the sum runs over the neighboring cells, Tji is the cell to cell
transmissibility (See Eqs. 7.19 and 7.26), and ∆V are the volumes
transported during the time step ∆t.

Summing up, we have two mass balance equations for each grid
cell: Mass balance

Vot − Vo − ∆Vot
i + ∆tQot = 0

Vgt − Vg − ∆Vgt
i + ∆tQgt = 0

, (11.15)

where Qo and Qg are source/sink terms that will be discussed
below. A superscript t denotes, as before, that the term has to be
evaluated implicitly. Mobilities may be evaluated explicitly, corre-
sponding to an IMPES method, or implicitly, corresponding to a
fully implicit method. The pressures in Eq. (11.14) are evaluated im-
plicitly. Upstream weighting is applied to the mobilities. Note that,
due to the gravity term, the oil and gas may flow in opposite direc-
tions even with zero capillary pressure; therefore the upstream cell
must be determined independently for the gas and oil mobilities. The upstream cell is determined

independently for each phaseWe have three unknowns in each grid cell, Vo, Vg, and P, and
mass balance provide two equations (Eq. (11.15)) per grid cell. In
order to proceed, we need an additional equation. This additional
equation is the volume balance equation which express the condi-
tion that the sum of oil and gas phase volumes must fill the cell:

Volume balance

Vor + Vgr = ϕV . (11.16)

We can use the volume balance equation to eliminate one unknown
in each cell, and express the two mass balance equations in terms of
the remaining two.

A grid cell can be in one of three states:

• single phase oil

• single phase gas

• two phase oil and gas in equilibrium

and the natural independent solution variables are state dependent.
In the single phase oil region, Vgr = 0, and Eq. (11.16) is simply

Vor = BoVo = ϕV , (11.17)

and using the definition of Rs, we see that we can make the substi-
tutions

Vo = V
ϕ(p)

Bo(p, Rs)

Vg = V
ϕ(p)

Bo(p, Rs)
Rs

, (11.18)
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The natural unknowns to solve for are then pressure, P, and
solution-oil-gas ratio, Rs. In the single phase gas region, we see
in a similar fashion that Vo and Vg can be expressed as functions
of pressure and Rv. The natural unknowns to solve for are then
pressure, P, and solution-gas-oil ratio, Rv. In the two phase region,
the fluid properties, Rs, Rv, Bo, and Bg, are functions of pressure
only, but Vo and Vg is the sum of contributions proportional to the
saturation of each phase:

Vo = Vϕ(p)
(

1
Bo(p)

So +
Rv(p)
Bg(p)

(1 − So)

)
Vg = Vϕ(p)

(
Rs

Bo(p)
So +

1
Bg(p)

(1 − So)

) . (11.19)

The natural unknowns are then pressure and saturation. These
relations between grid cell state and unknowns are summarized in
Table 11.1.

State Unknowns Vo/V Vg/V

Single phase oil P and Rs
ϕ

Bo

ϕRs

Bo

Single phase gas P and Rv
ϕRv

Bg

ϕ

Bg

Two phase P and So

(
1
Bo

So +
Rv

Bg
(1 − So)

)
ϕ

(
Rs

Bo
So +

1
Bg

(1 − So)

)
ϕ

Table 11.1: Cell states, corre-
sponding unknowns, and sub-
stitutions made in Eq. (11.15).

State changes during a time step need
special attention in the non-linear
solver.

Note that grid cells may change state as a result of changes in
composition and pressure. Since derivatives are not continuous
across the phase boundaries (See Figs. 11.6 and 11.7), this can create
convergence problems when solving the non-linear equation system
with a Newton method.

11.2.1 Fully implicit solution

As explained in in section 10.1.3, the set of non linear equa-
tions (11.15) is solved using an iterative Newton method. We have
two unknowns per grid cell, Pi and Xi, where Xi is either Rs, Rv, or
So depending on the grid cell state. We also have two equations per
grid cell, and evaluating the left hand side of each of these with a
given set of values for the unknowns yields residuals Roi and Rgi :

X =



P1

X1

P2

X2
...

PN

XN


, R =



Ro1

Rg1

Ro2

Rg2
...

RoN

RgN


. (11.20)

If X(m) is the current value for the unknowns (m-th iterate), and
R(m) is the corresponding residuals, an updated value X(m) is found
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as
X(m+1) = X(m) + ∆(m+1) , (11.21)

where ∆(m+1) is the solution of a system of linear equations

J(m)
R ∆(m+1) + R(m) = 0 . (11.22)

Here JR is the Jacobian matrix; the derivatives of the residual with
respect to the unknowns. The Jacobian matrix consist of blocks for
each pair (i, j) of grid cells:

JR =


J1,1 J1,2 J1,3 · · · J1,N−1 J1,N

J2,1 J2,2 J2,3 · · · J2,N−1 J2,N
...

...
...

. . .
...

...
JN−1,1 JN−1,2 JN−1,3 · · · JN−1,N−1 JN−1,N

JN,1 JN,2 JN,3 · · · JN,N−1 JN,N

 ,

(11.23)
where

Ji,j =


∂Roi

∂Pj

∂Roi

∂Xj
∂Rgi

∂Pj

∂Rgi

∂Xj

 . (11.24)

We have Ji,j = 0 except when the blocks i and j are neighbors,
making the Jacobian very sparse.

The state of a cell can be different from the state of its neighbors,
so it is not possible to give a single expression for the nonzero
elements of the Jacobian. The cell state, and thus the unknowns,
may also change from one iteration to the next. For single–phase oil
cells, a possible state change is checked by comparing R(m+1)

s with
Rs on the bubble-point line, or alternatively comparing P(m+1) with
p at the bubble point line. For single–phase gas cells, state change
is checked by comparing R(m+1)

v with Rv on the dew-point line. In
two–phase cells, S(m+1)

o < 0 signals a change to single–phase gas,
and S(m+1)

g < 0 signals a change to single–phase oil.
In terms of Bo, Bg, Rs, and Rv, the expressions for the different

derivatives that are needed for building the Jacobian are quite com-
plex, especially in the two phase case. Since the reservoir input is
table based, it is however most efficient to use the input to build
internal tables for the functions

βo(p, Rs) = 1/Bo(p, Rs)

βg(p, Rv) = 1/Bg(p, Rv)

β∗
o(p) = 1/Bo(p)

β∗
g(p) = 1/Bg(p)

ζo(p) = Rs(p)/Bo(p)

ζg(p) = Rv(p)/Bg(p)

. (11.25)

The star on β∗
p and ζ∗p indicates that the pressure derivatives in

two–phase cells are taken along the bubble-point and dew-point
lines.
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An overview of different derivatives that are needed for build-
ing the Jacobian in terms of the tabulated functions defined in
Eq. (11.25) can be found in Table 11.2.

Single–phase oil Single–phase gas Two–phase

X = Rs X = Rv X = So
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Table 11.2: Derivatives for
building the Jacobian as given
by Eqs. (11.23) and (11.24).11.3 Wells and source/sink terms

Source/sink terms are added to the mass balance equations in cells
that are penetrated by wells. With the exception of very simple
wells and well models, wells will also add extra unknowns and
equations, associated with the physical state of the well.

Wells are typically either pressure controlled (Dirichlet) or rate
controlled (Neumann). In all cases the sink term (production wells)
for component n has the form Sink term

Qn = Cwiλ
n
i
(

Pt
i − Pwi

)
, (11.26)

where Cwi is the connection factor, typically calculated using the
Peaceman formula (see Section 6.3), and Pwi is the wellbore or
completion pressure.
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If the well is pressure controlled, and connected to a single cell
without any fancy equipment in the completion, the well pressure Pressure controlled wells

Pwi is a known constant, and no extra equations or unknowns are
introduced. Note also that the sink term in this case has the same
form as the term for a constant pressure boundary (See Eq. 10.26).
A constant pressure boundary condition can therefore always be
simulated by introducing dummy wells with judicially selected con-
nection factors. If the well is connected to several cells, or the well
pressure is defined at a location different from the completion in
the cell, Pwi will be different from the controlling well pressure. The
difference is typically at least dependent on the hydraulic head, that
is the density of the fluid column in the well multiplied with the
height difference between where the well pressure is specified and
the cell. Since the well fluid density is a function of the reservoir
fluid densities and the fractional flow fo, and hence of the mobility
ratio λo

i /λ
g
i , Pwi will depend on the properties in all cells that are

connected to the well. The well state Pwi can in this case, at least in
principle, be specified without introducing any new unknowns, and
the sink term (11.26) will contribute to extra non-zero terms to the
Jacobian. However, in practice, instead of hand coding special cases,
at least one extra equation is typically added to the equation system
for each well.

Due to the way the black oil model is defined, where surface Rate controlled wells

components and surface phases are identical, single cell connected
wells that are controlled by the surface rate of one phase, are es-
pecially simple to model: Pressures and connection factors can be
eliminated from the sink term, and the rates are entered directly.
No extra unknowns are introduced. In the case of a specified sur-
face gas rate Qs

g, we get the sink terms

Qo =
λo

i

λ
g
i

Qs
g

Qg = Qs
g

. (11.27)

Rate control can also be specified in terms of phase specific or to-
tal reservoir rates, and a well is typically also connected to more
than one cell. In these cases, extra equations must be added to the
equation system for each well.

11.4 CO2 sequestration

This section will describe the use of the black oil model to simulate
CO2 injection into sub-surface reservoirs. CO2 sequestration is the
process of storing CO2, either by natural processes such as growing
forest, or by artificial processes such as capturing CO2, e.g., from
cement production or electricity production from hydrocarbons,
and then pumping the CO2 into subsurface reservoirs. Carbon
capture and sequestration into subsurface reservoirs is considered a
necessary part to reach the worlds climate goals.
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When injected into the subsurface, the CO2 is typically in a su-
percritical form. Here we will denote supercritical CO2 as scCO2, scCO2 = supercritical CO2

but we will be sloppy with our notation and often use CO2 also to
denote the supercritical phase. The injection of CO2 into depleted Note that most reservoirs considered

for CO2 injection are so deep that
the CO2 phase is supercritical, i.e.,
the pressure and temperature in the
reservoir are so high that the CO2
is above its critical point. Above the
critical point the liquid and gas phases
do not exist, but rather a supercritical
phase.

hydrocarbon reservoirs is a complicated process, with multiple
phases (hydrocarbon gas, oil, brine and CO2) and interactions be-
tween all of these phases. In this section we will focus on the sim-
pler process of CO2 being injected into an aquifer. Thus we will
have only two phases: CO2 and brine. The CO2 component can be
dissolved into the brine phase, and the brine component can evapo-
rate into the CO2 phase. When it comes to fluid properties, a good
representation of the evaporation of water into the CO2 phase is
less critical than the dissolution of CO2 into the brine phase, as the
change in properties of the CO2 phase is minor compared to the
change of properties of the brine phase. However, the evaporation
of brine into the CO2 phase increase the salinity of the remaining
brine, and can lead to salt precipitation. This can lead to clogging
of the near well zone, and thereby to injection problems. Such near
well problems will not be treated here.

The supercritical CO2 is stored by four different trapping mecha-
nisms:

• Structural trapping: Structural trapping is the trapping under
a cap rock or other stratigraphic units of the supercritical CO2

during its upward migration due to buoyancy. This is the main
trapping mechanism in the short term, i.e., on the time-scale of
the injection, on the order of years. This trapping mechanism
is similar to the trapping mechanism that create hydrocarbon
reservoirs.

• Capillary trapping: This is the residual saturation of supercritical
CO2 in the porous medium. During the upward movement of
CO2, the CO2 will first displace the brine phase (drainage), but
after passing through the CO2 will be displaced by the brine
phase again (imbibition). The remaining CO2 is mostly discon-
nected and capillary trapped, and thus immobile. This trapping
mechanism occurs on the same time-scale as structural trapping.

• Solubility trapping: This is CO2 dissolved in the brine phase. As
the density of the brine phase increase with increasing amount
of dissolved CO2, buoyancy will drive this dissolved CO2 down-
wards, and securely trapping it. As the density contrast between
brine with and without dissolved CO2 is small (on the order of
∆ρ ≃ 10 kg/m3), the convective transport of dissolved CO2 is a
slow process, and occurs at time-scales longer than the structural
and capillary trapping. It is however considered a more secure
form of storage.

• Mineral trapping: Chemical processes can transform the CO2 into
a solid phase, considered a stable and secure trap for the CO2.
Some sequestration projects target sub-surface structures where
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the reservoir minerals react with the injected CO2, and then
rapidly trap the CO2 as solids. For most sub-surface aquifers
the precipitation process will be slow, slower than the other
trapping mechanisms, however, it is considered as one of the
safest trapping mechanisms.

The scCO2 phase has a lower density than the brine phase, thus
due to buoyancy it will rise in the reservoir and form a gas-cap
at the top. When CO2 dissolves into the brine, the brine density
increase. This leads to convective mixing of the brine, where brine
with high CO2 content fingers downwards in the reservoir. Such
convective mixing is important for CO2 storage, as large amounts
of CO2 can be transported deep down in the reservoir, reducing
the free scCO2 phase and thereby the size of the gas cap. It might
eventually remove the gas cap entirely.

In the black-oil model, there is traditionally most interaction be-
tween the oil and gas phases, with gas being dissolved in the oil
phase. In some (extended) black-oil models the water phase can
evaporate, and other components than water can dissolve into the
water phase, however, this is not the main feature of the model.
For water and CO2 the dissolution of CO2 into the water phase is
an important process, which therefore needs to be included in the
modeling. As the traditional black-oil model disregard interaction
between the water phase and the other phases, it is better to treat
the water as oil in the traditional black-oil model. So when using
a traditional black-oil reservoir simulator to simulate CO2 seques-
tration, it is usual to treat the water phase as the oil phase and the
scCO2 phase as the gas phase.

In contrast to typical oil-gas systems, where the density of the
oil phase is lowered with an increased amount of dissolved gas, in
a water-CO2 system the density of water increase with increased
amount of dissolved CO2. This can be problematic for some black-
oil simulators when we use them to simulate CO2 sequestration,
as the simulators might have built-in warnings and errors for the
situation with lower oil phase density for increased amount of
dissolved gas.

There is an internal PVT model for water-CO2 systems imple-
mented in OPM-Flow. This CO2-water PVT model can be invoked by
the keyword CO2STORE. Using this model removes the need for PVT The model used in CO2STORE was

introduced in (Sandve et al., 2021).tables, e.g., PVTO, which are disregarded if included when using the
CO2STORE. The PVT model invoked by the CO2STORE keyword use
analytical expressions for calculating the amount of dissolved CO2,
the brine (water) density, etc. Note that these functional relation-
ships are also strongly dependent on brine salinity and tempera-
ture, so accurate values for these parameters should be provided by
the SALINITY and TEMP keywords.

Another keyword critical for using OPM-Flow to model CO2 se-
questration is the DRSDT keyword, which sets an upper limit for the
allowed change in RS values relative to the time-step, i.e., an upper
limit for ∂RS/∂t. The maximum dissolution rate is unfortunately
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dependent on the grid block size and geometry. When using the
CO2STORE keyword, the DRSDT keyword is replaced by the DRSDTCON

keyword, giving the upper limit in a dimensionless form dependent
on cell size and maximum dissolution at the current state (pressure
and temperature). This form alleviates some of the size depen-
dency. It is still necessary to estimate the dimensionless parameter.
e.g., by fine scale simulations where the grid cells are so small that
one can assume instant equilibrium between the phases within
each grid-cell. Such a fine scale simulation is shown in Fig. 11.8.
In this simulation we start with CO2 as a free phase on the top of
the model, and brine in the remainder. When the CO2 dissolves
into the brine phase, the brine becomes heavier, and starts to flow
downwards due to buoyancy. Due to mass balance, brine with less
amount of dissolved CO2 then needs to flow upwards to replace the
downward moving CO2 rich brine. This results in the convective
fingers observed in Fig. 11.8.

Figure 11.8: Three-dimensional
simulation of CO2 dissolu-
tion into the water phase, and
convective fingering due to
gravity contrast between water
with different dissolved CO2

content. This simulation was
conducted by OPM-Flow using
the CO2STORE keyword.

11.5 Examples

We will in this section present the data for simulating two simple
1D displacement processes with the black oil model. We will use
the model data given in Figs. 11.3, 11.4, and 11.53.

3 The simulator input files needed
for running these examples
can be found in the directory
flow/BOSimulations1D in the reposi-
tory at https://bitbucket.org/ntnu_
petroleum/ressimbook-material

The displacements involve displacing oil with either oil or gas,
but simulations are run with three-phase data. The water saturation
is set to Swi = 0.0001, as determined by the input oil–water relative
permeability table (codeword SWOF) shown in Fig. 11.9. Gas–oil
relative permeabilities are shown in Fig. 11.10. We see that residual
oil after gas injection is Sorg = 0.2.

11.5.1 Gas–oil two phase displacement

In this example we will investigate the process of gas displacing oil.
A two phase region will develop where the gas and oil phase are in
thermodynamic equilibrium. In the black oil model, as in any two
component model, the properties of the two phases in this region
will be determined by the pressure.

The simulation model has 100 grid cells, and a total length of
1000 m. Grid cells are 10 × 10 × 10 m. The initial pressure is 250 bar,
and the whole reservoir is filled with undersaturated oil with Rs =

90. There are two wells: a producer in the last cell, with bottom
hole pressure pBHP = 249 bar, and an injector, injecting gas with
Rv = 0 at a constant reservoir volume rate of 10 m3/d in the first
cell.

Results are shown in Fig. 11.11. We see that the gas breaks
through in the producer after around 900 days, with a sharp rise
in gas–oil ratio, resulting in a reduced oil production. The satura-
tion plot shows that the gas is moving through the reservoir with a
quite sharp front. However not as sharp as expected based on the
Buckley-Leverett solution for two phase displacement. This indi-

https://bitbucket.org/ntnu_petroleum/ressimbook-material
https://bitbucket.org/ntnu_petroleum/ressimbook-material


black oil simulations 193

SWOF

-- Sw Krw Kro Pc

0.000000 0.000000 1.00000 0

0.0001 0.000000 0.999 0 -- Swi

0.0500000 0.000860000 0.847820 0

0.100000 0.00263000 0.697460 0

0.150000 0.00524000 0.557170 0

0.200000 0.00877000 0.432860 0

0.250000 0.0133800 0.327570 0

0.300000 0.0192700 0.241770 0

0.350000 0.0267200 0.174150 0

0.400000 0.0360800 0.122370 0

0.450000 0.0478100 0.0837400 0

0.500000 0.0625000 0.0556500 0

0.550000 0.0809000 0.0357200 0

0.600000 0.103940 0.0219900 0

0.650000 0.132770 0.0128400 0

0.700000 0.168690 0.00699000 0

0.750000 0.213020 0.00346000 0

0.800000 0.266670 0.00149000 0

0.850000 0.329180 0.000510000 0

0.900000 0.397060 0.000120000 0

0.950000 0.461030 0.00001 0

1.00000 0.500000 0.000000 0

/

Figure 11.9: Input to OPM-Flow

for the oil–water relative per-
meabilities. This is simplified
data from the Norne model
(Ch. 14). The capillary pres-
sure, Pc, is set to zero.

SGOF

-- Sg Krg Kro Pc

0.000000 0.000000 1.00000 0.0

0.0500000 0.00165500 0.806888 0.0

0.100000 0.00691300 0.633562 0.0

0.150000 0.0162130 0.485506 0.0

0.200000 0.0299900 0.364043 0.0

0.250000 0.0486550 0.267589 0.0

0.300000 0.0725730 0.192992 0.0

0.350000 0.102046 0.136554 0.0

0.400000 0.137287 0.0946710 0.0

0.450000 0.178402 0.0641510 0.0

0.500000 0.225368 0.0423240 0.0

0.550000 0.278030 0.0270350 0.0

0.600000 0.336093 0.0165860 0.0

0.650000 0.399135 0.00966200 0.0

0.700000 0.466631 0.00525400 0.0

0.750000 0.538000 0.002 0.0

0.800000 0.612665 0.00 0.0 -- 1-Sorg

0.850000 0.690169 0.00 0.0

0.900000 0.770395 0.0000 0.0

0.950000 0.854218 0.00000 0.0

0.9999 0.9499 0.000000 0.0

1.00000 0.950000 0.000000 0.0

/

Figure 11.10: Input to
OPM-Flow for the gas–oil rela-
tive permeabilities. Amended
data from the Norne model
(Ch. 14); with residual oil to
gas, Sorg, set to 0.2.
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Figure 11.11: Gas displacing
oil. Top: Production rates.
Bottom: Gas saturation, and
dissolved gas component in oil
phase, Rs, as a function of dis-
tance from injector, at different
times. The blue line is the state
after 1800 days.

cates that there is some numerical diffusion. Notice also the sharp
rise in gas saturation in the region close to the injector; at the end
of simulation, the oil saturation in the cells close to the producer is
zero. Since the oil component can be dissolved in the gas phase the
amount of oil will be reduced by evaporation even when the oil is
immobile. In real hydrocarbon systems, only the lightest compo-
nents will evaporate, and the oil saturation will never be reduced to
zero. The effect of evaporation is exaggerated in a two-component
model like the black oil model.
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Figure 11.12: Dissolved gas,
Rs, and oil mass density, ρo, in
all cells at selected times (each
30 days). Green dots is single
phase oil, blue is oil in the two
phase region.

Figure 11.12 shows dissolved gas, Rs, and oil mass density, ρo,
in all cells at selected times. We see clearly the oil properties in the
two–phase region is a function of pressure alone.
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11.5.2 Single phase displacement

In this example we will investigate a single phase process where a
heavy oil with Rs = 0, is displacing a lighter oil with Rs = 90.0. The
oil and gas components move together with in the oil phase at the
same speed. Since we discard diffusion, and physical dispersion,
there should be a sharp displacement front with Rs = 0 behind the
front and Rs = 90 ahead of the front.

The simulation model has 100 grid cells, and a total length of
1000 m. Grid cells are 10 × 10 × 10 m. The initial pressure is 250 bar,
and most of the reservoir is filled with undersaturated oil with
Rs = 90. The first 10 grid cells (100 m) is filled with oil with Rs = 0
There are two wells: a producer in the last cell, with bottom hole
pressure pBHP = 249 bar, and an injector, injecting oil4 with Rs = 0 at 4 With the current version of OPM-Flow

(2001.04), injected oil has always Rs =
0 and injected gas has Rv = 0. To inject
gas or oil with other compositions we
can use two (pseudo) wells.

a constant reservoir volume rate of 10 m3/d in the first cell.
Results are shown in Fig. 11.13. We see that the gas-oil ratio, Rs,
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Figure 11.13: Oil displacing oil.
Left: Gas-oil ratio, Rs, in the
produced oil. Right: Composi-
tion profile at different times.
Initial composition profile in
blue.

in the producer start changing at around 1500 days, but complete
breakthrough of the injected oil is only experienced after 2500 days.
The displacement front is initially quite sharp, but the width in-
crease with time. The width of the front is more than hundred
meters at the time of breakthrough. We can conclude that this fully
implicit simulation suffers from severe numerical diffusion.

11.6 Exercises

Exercise 11.1 A grid cell is in the two phase state, and contain Vo

of oil component and Vg of gas component. Derive the formula for
partial volume of oil phase (oil saturation).

Exercise 11.2 Using the data in Figs. 11.3, 11.4, and 11.5, find

• Bubble point pressure for an oil with Rs = 90

• Rs of oil in the two phase region at pressure 250 bar

• Rv of gas in the two phase region at pressure 250 bar
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• Mass fraction of gas component in the oil phase and the gas
phase at pressure 250 bar

Exercise 11.3 For the systems in section 11.5:

• Create simulation models with different grid resolution, and run
these models with different maximal time steps. Maximum steps
are controlled by the code word TUNING, and OPM-Flow should be
run as
flow --enable-tuning=1 --enable-opm-rst-file=1 XXX.DATA

• Estimate the amount of numerical diffusion.

• How is numerical diffusion effected by ∆x and ∆t?
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Upscaling

He looked in to my eyes and thought he
saw a love light shine
Nearly did he know that that light was
dollar signs

Dolly Parton - I’ll Oilwells Love You

Upscaling is the process of replacing fine-scale properties by Upscaling

effective properties on a larger scale. For a grid, this means replac-
ing a fine grid by a coarser grid, where the fine and coarse grid
have similar response to changes in boundary conditions. This grid
coarsening process is illustrated in Fig. 12.1.

Upscaling is unavoidable when we want to deal with fluid flow
in a reservoir due to the vast scale and heterogeneities at all scales.
It is theoretically possible to keep track of all fluid interfaces and
the fluid composition throughout a reservoir, however, it is not
practically possible. As the Germans say: Es ist möglich, aber etwas
unwahrscheinlich. We therefore need upscaling.

Ω ΩCUpscale

Figure 12.1: Upscaling from
a fine grid Ω to a coarse grid
ΩC. The properties of sets of
fine cells are replaced by effec-
tive properties for the coarse
cells through upscaling.

We have already encountered upscaling. In Subsec. 3.2.1 we
discussed the continuum model, which can be considered as an
upscaled version of the pore scale. At the pore scale properties such
as porosity and permeability are not well defined. Given a volume
element at a larger scale, we can upscale the pore structure, i.e. the
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full description of pore-matrix interfaces, to effective properties
such a porosity and permeability for the volume element.

We have also encountered upscaling in our finite difference
scheme. For properties at the boundary between two grid cells,
e.g. at the point i + 1/2 between the cells i and i + 1 using our index
system, we used the harmonic mean as an upscaled value for the
permeability.

Geological structures in a reservoir exist at a range of length
scales, and structures at one scale are build up of structures at
smaller scales. Likewise, measured data are obtained at different
scales, from core-flooding on plug samples in the range of cm to
well tests which yield effective properties for the full height of the
reservoir. To integrate data from different scales one need upscal-
ing procedures. Further, it is not possible to represent all the finer
structures in a finite grid, so the grid model only represents the
larger geological structures. As small scale heterogeneities might
be important for flow on larger scales, they need to be taken into
account through upscaling.

In this chapter we will start by considering single phase proper-
ties such as porosity and permeability. Then, we will briefly inves-
tigate upscaling of two phase flow. We will start by investigating
the force balance between gravity, viscous and capillary forces. Af-
terwards we will look into some upscaling examples, highlighting
how different flow regimes will influence the coarse scale relative
permeability and capillary pressure.

12.1 Additive properties

Upscaling of volumetric properties, such as porosity and saturation,
is based on upscaling of volumes, which are additive properties.
This type of upscaling is fairly straight forward. It is however illus-
trative for other upscaling processes, so we will describe it in detail
in this section.

Consider a fine grid model with a corresponding coarse grid,
and let S be the set of fine grid cells inside a coarse grid block,
as illustrated in Fig. 12.1. For an additive property, such as total
volume Vt and connected pore volume Vc, the coarse grid block
values are just the sum of the values for the corresponding fine grid
cells:

VC
t = ∑

i∈S
Vt(i) (12.1)

VC
c = ∑

i∈S
Vc(i) . (12.2)

Here the superscript C indicates that this is a upscaled coarse grid
property.

Porosity is not an additive property, but it is a fraction of the two
additive properties connected pore volume Vc and total volume
Vt as ϕ = Vc/Vt. Thus we can use the upscaled versions of the
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additive values to obtain the upscaled porosity:

ϕC =
VC

c

VC
t

=
∑i∈S Vc(i)
∑i∈S Vt(i)

=
∑i∈S Vt(i)ϕ(i)

VC
t

. (12.3)

We observer that the upscaled porosity is the volume-weighted
average of the porosity for the corresponding fine scale grid cells.
Here we use the porosity definition ϕ(i) = Vc(i)/Vt(i) for the
individual fine scale grid cells.

Any volumetric property can be upscaled similarly to the upscal-
ing of porosity. For example, saturation can be defined as a fraction
of fluid volumes, and the fluid volumes are additive properties. We
can use the upscaled fluid volumes to obtain an upscaled satura-
tion. This is left as Exercise 12.1.

Figure 12.2: Porosity field for
both the original fine scaled
the SPE10 model and the up-
scaled coarse scale counterpart.

To illustrate upscaling of porosity, we will use model 2 from
10th SPE Comparative Solution Project (SPE10). The SPE models
are a set of reference models for reservoir simulation. SPE10 was
designed to be a benchmark case for upscaling of procedures. The
original benchmark study can be found in (Christie and Blunt,
2001). SPE10 model 2 consists of two parts representing north
sea reservoirs. Both parts are from the Brent reservoir: an upper The Brent reservoir is named after the

coastal bird of the same name, and
the initials of the formations in this
reservoir forms the reservoir name:
Broom, Rannoch, Etive, Ness and
Tarbert.

part consisting of a shallow-marine Tarbert formation where the
porosity values have a normal distribution, and a lower section con-
sisting of a fluvial Upper Ness formation. The fluvial lower part is
channelized, with high porosity in the channels and low porosity
background sand. This leads to a bimodal porosity distribution.

The original SPE10 model has a grid size of 60 × 220 × 85 cells,
while the coarser model has 15 × 55 × 17 cells. In Fig. 12.2 we have
plotted the porosity values for SPE10 model 2, both the original fine
model and a coarsened version where we have used Eq. (12.3) to
calculate the upscaled porosity values. As can be seen from the two
porosity fields, the finer details are lost when coarsening the model.

We also observe from Fig. 12.2 that the extreme values are lost
when we coarsen. To highlight this fact, we have plotted the poros-
ity values from the fine and coarse models in Fig. 12.3. We see that
the variance in porosity is significantly reduced when we coarsen
the model. The channelized lower part of the reservoir model con-
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Figure 12.3: The distribution
of porosity values for the fine
and coarse models shown in
Fig. 12.2.

sist of high porosity and permeability channels inside a low poros-
ity and permeability background sand. This part of the reservoir
has a strongly bi-modal porosity distribution; this bi-modal poros-
ity distribution can also be observed in the overal porosity distri-
bution for the reservoir in Fig. 12.3. However, we see that bi-modal
signature of the channels are lost in the upscaled porosity distribu-
tion.

This porosity upscaling example is instructive for how to deal
with property values in reservoir models, as all reservoir models
are at some level of coarseness compared to the underlying prop-
erty field. Using the variance in porosity from core plugs or from
well logs are in no way representative for the variance in the larger
scale grid blocks in a reservoir model. One should therefore never
use the property variance from one scale to populate a property
model at another scale.

12.2 Single phase transport

Upscaling of single phase transport, such as single phase flow, does
not have an analytical solution. Thus a single solution does not
exists for upscaling of permeability. Accordingly, and in contrast to
the analytical upscaling solutions for porosity and saturation in the
previous section, there is a range of different methods for upscaling
single phase transport properties such as permeability.

We have already encountered upscaling of single phase trans-
port when we upscaled from the pore scale to the continuum Darcy
scale in Chap. 3. In that chapter we presented the concept of a rep-
resentative elementary volume as an essential part of the upscaling
procedure. In this section we will look at upscaling of permeabil-
ity for a grid model, similar to the grid upscaling of porosity and
saturation in the previous section, and as visualized in Fig. 12.1.
We will consider averaging and flow based methods. We start with
averaging methods.

k1

k2

k3

k4l1

l2

l3

l4

d

w

Figure 12.4: Figure indicating
a layered model, with layers of
different permeability.

As mentioned, in general there is no analytical solution, conse-
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quently there is a range of different methods with their strengths
and weaknesses. The simplest methods are averaging methods, and Averaging methods

we have encountered them before.
Consider the layered model in Fig. 12.4. For this model we have

analytical solutions for the permeability along the layers or perpen-
dicular to the layers. Let us start by considering horizontal flow,
and assume a constant pressure drop over the model, thus a left
pressure pl and a right pressure pr that are constant over the full
side-plane of the model. We then have Darcy’s law for each layer as

Qi = kiwli
pr − pl

d
, (12.4)

where w is the width of the model, and d is the depth of the model,
as indicated in Fig. 12.4. The total volumetric flow rate Q = ∑i Qi is
then related to an upscaled horizontal permeability kC

h as

Q = kC
h wl

pr − pl
d

, (12.5)

where l = ∑i li is the height of the model. Combining Eqs. (12.4)
and (12.5), we get

Q = ∑
i

Qi

kC
h w ∑

i
li

pr − pl
d

= w ∑
i

kili
pr − pl

d

kC
h =

1
∑i li

∑
i

kili . (12.6)

So, for horizontal flow, i.e., flow along the layers, the effective per-
meability is the height-weighted arithmetic mean

kC
h =

1
∑ li

∑ liki , (12.7)

where the sum runs over all the layers i. We see that by multiplying
all lengths with the horizontal area of the model, we get a volume-
weighted arithmetic mean instead of a mean weighted by the layer-
heights.

Let us now consider flow perpendicular to the layers, i.e., vertical
flow in the model depicted in Fig. 12.4. In this case, due to mass
balance, the volumetric flow rate through each layer much be the
same, thus Qi = Q is constant. For each layer we have Darcy’s law
given as

Qi = kiwd
∆pi
li

, (12.8)

where ∆pi is the pressure drop over the i-th layer (to include grav-
ity, either consider the hydraulic head or include a ρg∆li term). The
total volumetric flow rate Q = Qi is then related to an upscaled
vertical permeability kC

v as

Q = kC
v wd

∆p
l

, (12.9)

where ∆p = ∑i ∆pi is the total pressure drop in the vertical direc-
tion over the model, and l = ∑i li is the height of the model.
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Equating Eqs. (12.8) and (12.9), we have

Q = Qi

kC
v wd

∆p
l

= Qi

kC
v =

1
wd

l

∑ ∆pi
Qi

kC
v =

∑i li
∑ li

ki

. (12.10)

Thus, for flow perpendicular to the layers, the effective permeability
is the harmonic mean of the permeability values, weighted by the
heights li:

kC
v =

∑ li
∑ li

ki

. (12.11)

From the equations for horizontal and vertical flow we can ob-
serve that the high-permeable layer dominates the effective perme-
ability for the horizontal flow kC

h , while the low-permeable layer
dominates for the effective permeability for vertical flow kC

v . Thus,
the horizontal and vertical permeability values can be very dif-
ferent. They are equal if and only if all the layers have the same
permeability, i.e., for a homogeneous medium. As the arithmetic
average is always higher than the harmonic average, for all other
cases than the homogeneous medium we have that the permeability
along the layering is higher than the permeability perpendicular to
the layering. Thus, it is always easier for the fluid to flow along the
layers than perpendicular to them.

The two analytical averaging methods does not hold for any
other grid than the layered one, and for any other direction than
the layer direction of perpendicular to the layer direction. Still, the
arithmetic and harmonic mean are outer bounds for the permeabil-
ity. The geometric mean, which always gives a value between the The arithmetic and harmonic mean as

outer bounds dates back to (Wiener,
1912), and are called Wiener bounds.

arithmetic and harmonic mean, can be considered as a compromise.
While the geometric mean can give fair values, see, e.g., Warren and
Price (1961), it is off course nothing more than an approximation.
Other popular approximations include the harmonic-arithmetic av-
eraging, while renormalization might be a more effective upscaling
technique for strong permeability contrasts (King, 1989).

Another set of single phase upscaling methods are defined by
the need to solve an incompressible steady-state flow, known as
flow based methods. With these methods we need to solve the single Flow based methods

phase flow equations, e.g., as described in Chap. 5. Flow based
methods are considered better than averaging techniques, as they
take the underlying permeability distribution into account.

The flow based upscaling methods can roughly be divided into
two categories; local and global methods. For the local flow based
upscaling methods, each coarse grid block is upscaled individually, Local flow based upscaling

as indicated in Fig. 12.5. For each coarse block, the permeability can
be upscaled in different directions: A constant pressure drop is ap-
plied over the two opposite sides in the upscaling direction. Either
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pi po

Figure 12.5: A sketch indi-
cating the process of local
flow based upscaling for a
two dimensional permeability
grid. The fine grid is indi-
cated with thin lines, while
the coarse grid is indicated by
thicker lines. One coarse block
is extracted for flow based
upscaling.

no-flow or periodic boundary conditions are applied to the other
sides. When using no-flow for the other sides, we only obtain the
diagonal terms of the upscaled permeability tensor, while periodic
boundary conditions can give off-diagonal terms too. The magni-
tude of the pressure drop po − pi does not matter, as this pressure
drop will be scaled out. Equivalently, the final permeability solution
is independent of the viscosity used in the solution of the single
phase flow. Solving the flow field yields a total volume rate Q, and
we then obtain the upscaled permeability in the given direction for
the coarse grid block as

kC =
Qµl

po − pi
, (12.12)

where l is the length in of the coarse block in direction of the ap-
plied pressure drop.

The global flow based upscaling methods solve the fluid flow equa- Global flow based upscaling

tions for the entire grid. After obtaining a global flow solution, the
pressure drop and volumetric flow rate over the individual coarse
grid cells are summed up to obtain the upscaled permeability val-
ues as

kC =
Qµl

po − pi
, (12.13)

where the over-lines indicate average values.
In the example indicated in Fig. 12.6, we want to calculate the

horizontal permeability in the extracted highlighted coarse block:
The inlet pressure would be the pore-volume average of all the
pressures on the left side, and the outlet pressure would be a
similar calculation on the right side. The outlet volumetric rate
would be the integral of the fluxes, in this case the sum of the cell-
boundary volumetric rates qi. The horizontal volumetric rate would
be the average of the inlet and outlet flow rates.

The global upscaling approach will give different results for dif-
ferent boundary conditions used for the flow field solution. In the
simplified example in Fig. 12.6 one could define constant pressure
on two opposite side planes. Another possibility is to use the actual
wells in the reservoir model, however, then the method is only valid
for coarse blocks without wells. The global method gives good re-
sults on the coarse scale when using the same boundary conditions
as was used to find the upscaled permeability values. However, it
might be less robust for changes in boundary conditions compared
to the local approach.



204 reservoir simulation

In addition to the local and global flow based methods, there
are a range of hybrid methods. It is also common to upscale the
transmissibility values instead of the permeability values.

12.3 Force balance
This section is based on the paper
(Hilden and Berg, 2016).We start by considering two phase incompressible flow. From

Eq. (9.2) we have the mass balance for each phase given by

− ∂

∂x
(ρiqi) =

∂

∂t
(ϕρisi) , (12.14)

where ρi and qi is the density and Darcy velocity of phase i, respec-
tively. Assuming solely two phases, we have so + sw = 1. As we
consider incompressible flow, the densities ρi are constant, thus
Eq. (12.14) reduces to

−∂qi
∂x

=
∂

∂t
(ϕsi) . (12.15)

The extended Darcy equation was introduced in Eq. (9.3) as

qi = − kkri
µi

∂pi
∂x

. (12.16)

Here kri is the relative permeability of phase i, and pi is the pres-
sure in phase i. The phase pressures are linked through the :

pc = po − pw . (12.17)

If we include gravity, then Eq. (12.16) can be extended as follows:
Darcy’s law with gravity term

qi = − kkri
µi

(
∂pi
∂x

− ρig
∂z
∂x

)
. (12.18)

Here the last term gives the gravity contribution, where it is assume
that the x-direction is tilted versus the depth given by z. Remember
that the pressure and gravity terms can be joined into the head, as
shown in Eq. (3.17).

We now introduce the phase mobility λi = kri/µi, and obtain the
two extended Darcy equations as follows:

qo = −kλo

(
∂po

∂x
− ρog

∂z
∂x

)
qw = −kλw

(
∂pw

∂x
− ρwg

∂z
∂x

)
. (12.19)
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Figure 12.6: A sketch indicat-
ing the process of global flow
based upscaling for a two di-
mensional permeability grid.
One coarse block is extracted
from the grid, and the pressure
and flow rate are calculated for
the different side planes.
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α

z x

Figure 12.7: A pseudo-1D slab
tilted an angle α from the hori-
zontal. The cross-sectional area
is constant.

If we subtract λo/λw times the water equation in Eq. (12.19) from
the oil equation in Eq. (12.19), then we get

qo −
λo

λw
qw = −kλo

(
∂(po − pw)

∂x
− (ρo − ρw)g

∂z
∂x

)
= −kλo

(
∂pc

∂x
− ∆ρg

∂z
∂x

)
, (12.20)

where pc = po − pw is the capillary pressure, and ∆ρ = ρo − ρi is
the density contrast.

Let q = qo + qw be defined as the total Darcy velocity, then

qo −
λo

λw
qw = q − qw − λo

λw
qw

= q −
(

1 +
λo

λw

)
qw

= q − λw + λo

λw
qw

= q − 1
fw

qw , (12.21)

where fw = λw/(λw + λo) = 1/(1 + λo/λw) is the related to the
fractional flow of water . Here we define fw using the equa-

tion for fractional flow as given by
Eq. (9.11), even though Eq. (9.11) was
derived for a case without capillary
pressure.

Replacing the left hand side of Eq. (12.20) with Eq. (12.21) and
rearranging, we obtain

qw = fwq + k fwλo

(
∂pc

∂x
− ∆ρg

∂z
∂x

)
. (12.22)

If we insert Eq. (12.22) into Eq. (12.15), we get:

−∂ϕsw

∂t
=

∂ fwq
∂x

+
∂

∂x

(
k fwλo

(
∂pc

∂x
− ∆ρg

∂z
∂x

))
. (12.23)

Since sw + so = 1, we can add the mass conservation equations,
Eq. (12.15), for the two different phases to obtain

−∂qw

∂x
− ∂qo

∂x
=

∂

∂t
(ϕsw) +

∂

∂t
(ϕso)

−∂qw + qo

∂x
=

∂

∂t
(ϕ(sw + so))

− ∂q
∂x

=
∂

∂t
(ϕ) = 0 , (12.24)

thus
∂ fwq

∂x
= q

∂ fw

∂x
+ fw

∂q
∂x

= q
∂ fw

∂x
. (12.25)
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Inserting Eq. (12.25) into Eq. (12.23) we get

−∂ϕsw

∂t
= q

∂ fw

∂x
+

∂

∂x

(
k fwλo

(
∂pc

∂x
− ∆ρg

∂z
∂x

))
. (12.26)

This equation is useful to investigate how different forces af-
fect the flow behavior. We can split Eq. (12.26) into three parts, as
follows:

−∂ϕsw

∂t
= q

∂ fw

∂x︸ ︷︷ ︸
viscous

+
∂

∂x

(
k fwλo

∂pc

∂x

)
︸ ︷︷ ︸

capillary

− ∂

∂x

(
k fwλo∆ρg

∂z
∂x

)
︸ ︷︷ ︸

gravitational

.

(12.27)
Here the first part scale with the total flow rate q, and is thus a
measure of the viscous forces. The second part scales with the
gradient in capillary pressure, and is thus a measure of capillary
forces. The last part scales with the product of the density contrast
and the z-gradient, and is a measure of the body force from gravity,
and thus a measure of the contribution to fluid redistribution from
gravitational segregation.

12.4 Limiting solutions

For high flow rates, i.e. when q is large, we observe that the viscous
part will dominate the right hand side of Eq. (12.27). Thus, we can
simplify the high flow rate solution to

High rate limit solution
−ϕ

∂sw

∂t
=

∂ fw

∂x
q . (12.28)

If we set the capillary pressure and density contrast to zero, our
solution would be given by Eq. (12.28). At steady state we have
δsw/δt = 0, thus we get ∂ fw

∂x q = 0. Hence the fractional flow is
constant (at least for the non-trivial cases q ̸= 0, while for the trivial
case q = 0 the fractional flow fw is undefined).

Generalizing the equations to three dimensions, it can be shown
that we end up with the equation ∇ fw · q = 0. This equation tells See (Hilden and Berg, 2016) for a

general derivation in three dimensions.us that the fraction flow of water is constant in the direction of flow,
where the direction of flow is given by the Darcy velocity vector q.
As the fractional flow of water is constant in the direction of flow,
the fractional flow of water will be constant along each streamline.

For low flow rates, i.e. when q is small, then (∂ fw/∂x)q will
diminish, and Eq. (12.28) will be dominated by the capillary and
gravitational forces:

Low rate limit solution
−ϕ

∂sw

∂t
=

∂

∂x

(
k fwλo

(
∂pc

∂x
− ∆ρg

∂z
∂x

))
. (12.29)

At steady state, ∂sw/∂t = 0, this gives

∂pc

∂x
= ∆ρg

∂z
∂x

. (12.30)

Thus at steady state, the capillary forces is in equilibrium with
gravity. Generalizing to three dimensions, we have

∇pc = ∆ρg∇z . (12.31)
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This can be further simplified if we assume that gravity is negli-
gible, e.g. for small samples where the height difference is compara-
tively small. Then Eq. (12.31) is simplified to:

∇pc = 0 . (12.32)

In this limit, the capillary pressure is equal throughout the model,
as the gradient in capillary pressure has vanished.

12.4.1 Capillary limit upscaling

We can use Eq. (12.32) to upscale flow parameters in the capillary
limit, i.e. where we have low flow rates and where the capillary
forces are strong. As an example, consider a model consisting of
high permeable and low permeable layers, as depicted in Fig. 12.8.

10 cm

10 cm

10 cm

10 cm

Figure 12.8: Figure indicating
a layered model, with repeat-
ing layers of high and low
permeability.

If we assume Eq. (12.32), then the capillary forces will redis-
tribute the fluids until there are no gradients in the capillary pres-
sure. Assume the capillary pressure curve for the high permeability
and low permeability layers are as plotted in Fig. 12.9.

In the capillary limit, as the capillary pressure is equal through-
out the model, both the high and low permeability layer should
have the same capillary pressure. In Fig. 12.9 we have chosen a
capillary pressure pc. We can then find the saturation values for
the two layers at capillary pressure pc; the saturation in the high
permeable layer is indicated as swh, while the saturation in the low
permeability layer is indicated as swl . We see that the low perme-
able layer has a higher water saturation than the high permeable
layer. This is because the rock we are considering is water wet, and
then water will be sucked into the smaller pores.
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Figure 12.9: The capillary pres-
sure curves for the high and
low permeability layers in the
previous figure. The dashed
line indicates a single capillary
pressure, and the correspond-
ing saturation in the high and
low permeable layers.

Given the saturation in each layer, we can then calculate the
saturation in the full model as

s̄w(pc) =
swl(pc)ϕlVl + swh(pc)ϕhVh

ϕlVl + ϕhVh
, (12.33)

where Viϕi is the pore volume of the high i = h and low i = l per-
meable layers. The resulting capillary pressure curve (the inverted
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curve of s̄w(pc), i.e. the curve of p̄c(sw), where the bars indicate
upscaled values) is shown in Fig. 12.10.
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Figure 12.10: The capillary
pressure curves for the high
(blue) and low (red) perme-
ability layer, and the upscaled
capillary pressure curve for the
full model in black.

Given a saturation distribution (as indicated in Fig. 12.10), we
can calculate the corresponding relative permeability for the two
phases. For simplicity, we will assume that we only have one set
of relative permeability curves krw given by the Corey exponents
nw = 2.0 = n0 and krwo = 0.4. These curves are shown by the
dashed lines in Fig. 12.11. Extending to two sets is simple. For a
given set of saturation for the high swh and low swl permeability
layers, we then have the corresponding relative permeability for the
layers as krw(swh) and krw(swl).

We can then calculate the effective relative permeability for the
whole model. Here we are assuming perfect layering, so that the
effective horizontal permeability is just the height weighted average
of the permeability.

k̄rw(s̄w) =
krw(swh)khhh + krw(swl)klhl

khhh + klhl
, (12.34)

where hi is the height and ki is the permeability of the high per-
meable i = h or low permeable i = l layer. The effective vertical
permeability is similarly given by the harmonic mean.
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Figure 12.11: The upscaled
relative permeability curves
for the layered model. Hori-
zontal relative permeability as
full drawn lines, and vertical
relative permeability as dash-
dot lines, Dashed lines are the
underlying fine scale relative
permeability.

Assume that Using a permeability 1000 mD for the high perme-
able layer and a permeability of 10 mD for the low permeable layer
gives upscaled relative permeability curves as shown in Fig. 12.11.

As the low permeability layer is first filled up with water, there
will be small changes to the horizontal relative permeability curves
until the low permeability layer is almost completely filled with
water. Then, the high permeable layer will start to be filled up, with
a correspondingly large change in relative permeability. The effect
is opposite for the vertical permeability. This example illustrates the
fact that an anisotropic absolute permeability is usually accompa-
nied with an anisotropic relative permeability.

12.4.2 Viscous dominated upscaling

We will now consider the opposite case of the capillary limit up-
scaling, namely a viscous dominated upscaling. We know from the
previous section that the fractional flow is constant along streamlines
for high rates (Eq. (12.28)). This is implemented in what is called
viscous limit upscaling where the saturation distribution is deter- Viscous limit upscaling

mined by setting the fractional flow equal everywhere similar to how
capillary pressure defines saturations in capillary limit upscaling.
However, this approach is typically only applicable in cases where
the rock-types are essentially randomly distributed, since the frac-
tional flow may vary between streamlines.

Below we will consider a layered model in the viscous limit.
The capillary pressure is set to zero, and the gravitational part of
Eq. (12.27) is removed by setting the densities equal (OPM-Flow in-
put shown in Fig. 12.12). The relative permeability curves are also
set equal in each layer. In this case normal viscous limit upscaling
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DENSITY

-- Oil Water Gas

-- (kg/m3) (kg/m3) (kg/m3)

1025 1025 0.82 /

PVTW

-- REF.PRES. REF. FVF COMPRESSIBILITY REF.VISC.

-- -> VISCOSIBILITY

-- (bar) (m3/m3) (1/bar) (cP) (1/bar)

100 1.00 2.0e-4 1.0 0.0e+0 /

PVDO

-- PRES. FVF. VISC.

50.0 1.01 1.0

100.0 1.00 1.0

200.0 0.98 1.0

/

Figure 12.12: Equal density of
oil and water is obtained in
OPM-Flow by setting surface
densities and formation fac-
tors equal (Reservoir pressure
is 100 bar). The shown input
also sets compressibility and
viscosity equal for the two
phases.

would give upscaled relative permeability curves that are identical
to the input curves. Contrary to this, we will see below that sub-
stantially different upscaled relative permeability curves are needed
in order to reproduce fine simulation results in an upscaled model.

To simplify, we will only consider two layers, instead of the 4 in
Fig. 12.8. We will have the same permeability distribution as for
the capillary limit case, namely 1000 mD for the high permeable
layer and a permeability of 10 mD for the low permeable layer. The
model consists of 102 cells in x-direction, and 10 cells in z-direction.
The cells are 10 m in x-direction, and 1 m in z-direction.

Figure 12.13: The fluid distri-
bution in the two layer model
during injection. We see that
the water (blue) is intruding
into the high-permeable layer,
while the low permeable layer
is still close to initial oil satura-
tion.

Running the model gives a fluid distribution as shown in
Fig. 12.13. We observe that the water is choosing the path of least
resistance, displacing the oil in the high permeable layer, while the
oil in the low permeable layer is close to initial oil saturation (i.e.
residual water saturation).

To upscale the static model, we replace the fine grid with a
coarse grid consisting of cells of size 10 m in the z-direction, thus
reducing the number of layers from 2 to 1. In the x-direction, the
first and last cell will have the same dimensions (to avoid upscaling
of the wells), while the other cells will have size of 50 m.

For the relative permeability upscaling, we see that the water sat-
uration in the high permeable layer is almost shifting from residual
oil to irreducible water while the water saturation in the low per-
meable layer stays constant at residual oil. If we use this saturation
distribution, and calculate the effective relative permeability from
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Eq. (12.34), we obtain an upscaled curve as shown in Fig. 12.14.
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Figure 12.14: The original and
upscaled relative permeability
curves for the two layer model.

Running the coarse scale model with the original relative perme-
ability curves and the upscaled relative permeability curves gives
an oil production as shown in Fig. 12.15. We see that the model
with relative permeability upscaling has a much better match with
the original model than the cooarsened model with only absolute
permeability upscaling. Also shown in the figure is the procuction
from a fine model with capillary pressure curves from section 12.4.1
and a realistic density difference of 245 kg/m3. This model is nei-
ther in the viscous- nor in the capillary limit, and both capillary
forces and gravity contribute to the transport.
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Figure 12.15: The oil produc-
tion rate of different two-layer
simulation models.

Note that the upscaling of the viscous dominated model give
upscaled relative permeability curves that moves in the opposite
direction of the upscaled relative permeability curves for the capil-
lary limit case. Capillarity distributes water in the vertical direction,
thus delaying water break through, while viscous forces segregate
water through high permeable layers, thus promoting early water
break trough.

Almost identical results to the present viscous limit upscaling of
this layered model could have been obtained by using a net-to-gross
model, that is defining the low permeable layer as non-reservoir.
This would have the additional side effect of reducing the original
oil in place to half, and doubling apparent recovery rates1. 1 Actual production (if implemented) is

of course not influenced by the mod-
eling choiches, so we leave it to the
reader to ponder the consequences (for
persons involved and buisness deci-
sions) of selecting viscous dominated
upscaling vs. NTG = 0.5, if the actual
production would come out as the
green-line in Fig. 12.15

12.5 Exercises

Exercise 12.1 Use the fluid volumes to define an upscaled value
for saturation. Show that the upscaled saturation is a pore-volume
weighted average of the fine scale saturation values.



13
Model uncertainty and updating

We demand rigidly defined areas of doubt
and uncertainty!

Vroomfondel in ‘ ‘The Hitchhiker’s Guide
to the Galaxy” by Douglas Adams

Our simulations will never perfectly predict or reproduce reser-
voir behavior. The main sources of uncertain predictions are that
the true sub-surface remains unknown, that our models are coarse
grained representations, and that the modeling algorithms have sys-
tematic errors. The total uncertainty should be taken into account
when taking reservoir development and reservoir management
decisions.

Even if we were able to integrate all our knowledge about the True uncertainty

state of the sub-surface into a perfect model with infinite predic-
tion accuracy, there will always be an infinite number of possible
true reservoirs that are consistent with our data. Since the true
sub-surface remains to a large extent unknown throughout the pro-
duction history, our predictions can never, and should never, be
more accurate than the spread within this true uncertainty. It is of-
ten stated that we will not know what a reservoir will produce until
after end of production. Even then we will not know what we could
have produced had we selected another production strategy, and
how much of the resource remain in the ground.

Current reservoir simulation models can have millions of grid- Many-to-One statistical spread

blocks, but they are still very coarse grained representations of
often highly heterogenous geology. Theoretically, with sufficient
separation of scales, proper upscaling will eliminate the spread
in coarse scale behavior. In practice this is never obtained, and
for each coarse scale model there will be an infinite number of
consistent fine scale models, each with a different response. This
many-to-one statistical spread should be addressed both in model
prediction and model updating.

Coarse graining is also a source of bias. Bias are systematic er- Bias

rors due to deficiencies in modeling or modeling algorithms, and
can never be totally eliminated. Known biases can be, and should
be, corrected for, but in general there will always be an element of
unknown bias which must be accounted for.
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Based on a simplified model of normal-distributed errors, the
total uncertainty can be expressed through standard deviations σ as Total uncertainty

σ2
total = σ2

true + σ2
mto + σ2

bias . (13.1)

13.1 Uncertainty modeling workflow

Estimates for the many-to-one uncertainty and bias are to a large
extent set at the discretion of the reservoir team based on experi-
ence and expertise, while the true uncertainty is typically repre-
sented by an ensemble of reservoir model realizations. Each ensemble Ensemble of realizations

member (realization), Λn, represents a possible reservoir, and has
its own dynamic behavior. The ensemble is generated such that
it can be used to calculate the expected value ⟨·⟩ of a reservoir re-
sponse R, for instance oil production in a specific year, through

⟨R⟩ = ∑
n

wnR(Λn) , (13.2)

where wn is a weight given to the ensemble member. Note that
(13.2) also applies to uncertainty measures such as variance and
probability quantiles. In most cases each ensemble member is given
equal weight wn = 1

N , where N is the ensemble size. This is often
called an ensemble of equiprobable members, which actually is Ensemble of equiprobable members

misleading since strictly speaking the members have equal weight
and not equal probability.

In reservoir modeling, uncertainty is often introduced on
three distinct levels. This is the uncertainty hierarchy illustrated in
Fig. 13.1. On the top of the hierarchy we have a set of distinct sce-

Figure 13.1: The uncertainty
hierarchy

narios, each scenario has a set of uncertain model parameters, and
for each parameter set a number of realizations is drawn using a
stochastic algorithm.

Scenario uncertainty is the spread of outcomes over a set of rea- Scenario

sonably plausible, but qualitatively different, models. Each scenario
is typically a different conceptual model, but any discrete selection
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may in general define a scenario. Scenario uncertainty is often the
main contribution to overall uncertainty, especially early in field
life. Designing experiments, and interpreting data, with the goal of
discarding a scenario is a crucial part of reservoir characterization.
Each scenario is often assigned a different probability. This trans-
lates to different weights for ensemble members stemming from
different scenarios, or to drawing a different number of ensemble
members from each scenario.

Models for each scenario are built in a reservoir modeling tool
where a representation of the geology is built using stochastic algo-
rithms which are constrained by a set of parameters. Parameters are Parameter uncertainty

numbers that characterize model elements of the reservoir, such as
zone thicknesses, sand body size and direction, and the variation in
these properties. The parameter values are not known a-priori, and
static data that constrain the uncertainty are scarce. Often the main
constraint is prior knowledge, which is based on outcrop analogies
and insight into geological processes. Thus, generating model re-
alizations using fixed parameter values will not result in a correct
uncertainty span.

The algorithms are also constrained by observations such
as well-logs and seismic. These constraints are called data-
conditioning, and are also typically uncertain as they are not direct Conditioning data

observations of reservoir properties. Conditioning data should thus
not be treated as hard data.

The final step is to run a stochastic algorithm that generate re- Stochastic generation of realizations

alizations with fixed parameters and conditioning data. The total
process of varying scenario, parameters, and conditioning data,
and generating stochastic realizations, will give a, hopefully statis-
tically correct, ensemble of model realizations. As a rule of thumb:
an ensemble size of at least 10 is needed in order to say anything
reasonable about expected values, while ensembles with size in the
order of 100 are needed for uncertainty evaluation.

13.2 Updating the model

The reservoir model should be consistent with all available data,
and as more data is collected the model must be updated in order
to accommodate these data. The new data will reduce the num-
ber of consistent reservoirs, and in most cases this will also reduce
the uncertainty in predictions. Applying measured data in order
to update the model is in general called conditioning to data. With Conditioning to data

reference to the uncertainty hierarchy (Fig. 13.1) the data can be ap-
plied in at least four ways: Eliminate, or reduce the probability of,
scenarios, update model parameter statistics, add as direct condi-
tioning data in geo-statistical algorithms, or post process an existing
ensemble of realizations. Complete updating of the whole model is
called big loop updating, while working with changing realizations Small loop vs. big loop updating

and realization-weights only is called small loop updating.
Few quantitative methods exist for reducing scenario uncertainty Reducing scenario uncertainty
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in terms of updating scenario probabilities. The most important
part of work relating to uncertainty is identifying all of the possible
scenarios, and not discarding scenarios too early in the process. In
practice scenario uncertainty is updated by identifying data that
are inconsistent with certain scenarios, thus eliminating these, and
plan measurements that produce such data. Repeated seismic and
well test data are well suited to discriminate between structural
scenarios, while cored wells and well-logs are important for dis-
criminating conceptual models.

Model parameter statistics can be updated based on well-test Updating model parameter statistics

data, production data, and analysis of new well-logs and cores.
New spatially localized data, such as well logs, inverted seismic, Spatially localized data

and interpreted permeability from well-tests, should be added to
the conditioning data in order to make the model locally consistent.
Note that in situations where fast model updates are required, such
as for geo-steering, these data may also be applied in a “small loop”
at the realization level.

13.3 General theory for updating

The statistical theory for updating incomplete knowledge from
observations is built on Bayes theorem, which states that the up- Bayes theorem

dated probability (posterior), p(λ|M), of a property, λ, after we
have made measurements, M, is proportional to the product of the
probability assigned to the property before the measurement (prior
knowledge), p0(λ), and the probability that a measurement will
give the measured values given the property, p(M|λ), (likelihood).

p(λ|M) =
p(M|λ)p0(λ)

p(M)
∝ p(M|λ)p0(λ) (13.3)

Bayes theorem is applicable to all types of parameter estimation
problems, and in the context of reservoir modeling the property λ

is a possible reservoir model realization, and the prior and posterior
probabilities are typically represented by ensembles. For many data
types, the application of Bayes theorem is built into the algorithms
that generate the ensemble as conditioning data. A typical example
is porosity estimates from well logs. In these cases, model updating
means running the modeling software again with more condition-
ing data. Bayesian updating can in many cases be applied directly
on the ensembles by changing weights or creating new ensemble
members by mixing properties from members of the prior ensem-
ble. The simplest of these methods is reweighting, where ensemble Reweighting

member weights in (13.2) are scaled by the likelihood

wn ∝ wn0 p(M|Λn) . (13.4)

Simple reweighting is almost never used in practice since it can
only be applied in cases where the new measurements carry little
information, so that the likelihood is similar for most of the en-
semble members. If this is not the case, the number of effective
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ensemble members will be significantly reduced. This phenomenon
is called ensemble collapse, and can also be a problem in other
more sofisticated ensemble updating methods. More applicable are
the ensemble Kalman methods, which seek an updated ensemble ensemble Kalman methods

with members in the space of linear combinations of prior ensemble
members.1 The main limitation of the ensemble Kalman methods is 1 See for instance "Data Assimilation The

Ensemble Kalman Filter" (Evensen, 2009)
for a detailed description.

that one has to give mathematical meaning to the concept of “linear
combinations of reservoirs”. Also a linearity assumption is made
when calculating the likelihood from this linear combination, and
the likelihood model must be Gaussian2. Kalman methods only 2 The Gaussian likelihood model

is discussed in more detail later in
this chapter. The form assumed by
the ensemble Kalman methods is
basically (13.12)

involve linear algebra, and are very fast. This makes them very at-
tractive in cases where fast updates are required. An example is
the updating of local properties around a well path in a well with
logging-while-drilling measurements used for geo-steering. The
properties are in these cases often also additive, such as porosity,
sand fraction, and saturation (see Chap. 12.1), and the measure-
ments near linear in these properties, making Kalman ensemble
updating feasible also from a theoretical standpoint.

13.3.1 Monte Carlo sampling

The practice of generating ensembles representing statistical distri-
butions and using them to calculate properties using (13.2) stems
back to the seminal paper “Equation of State Calculations by Fast
Computing Machines” (Metropolis et al., 1953). In our context, the
methods now known as Markov Chain Monte Carlo sampling are
random walks through the space of possible reservoirs {Λ}. At
each point, the walk has two steps: a proposal step proposing a
new reservoir Λ′ with probability pprop(Λ′|Λ), and an acceptance
step where the proposal is accepted with probability pacc(Λ′|Λ).
In order to get samples from the probability p(Λ), the acceptance
probability must satisfy the following property3 3 The attentive reader will note that

the acceptance probability defined
here may be larger than one. Proposals
where pacc(Λ′|Λ) > 1 are always
accepted.

pacc(Λ′|Λ) =
p(Λ′)
p(Λ)

pprop(Λ|Λ′)
pprop(Λ′|Λ)

. (13.5)

An important aspect with (13.5) is that the acceptance probabil-
ity only depend on probability ratios. Thus, with respect to Bayes
theorem (13.3), we don’t need to specify the probability of measure-
ment, p(M), or indeed any other normalizing factors on the like-
lihood or prior probability. Note that if the proposal function pro-
pose a sample from the sought probability, i.e. pprop(Λ|Λ′) = p(Λ),
the acceptance probability is 1 as it should. Also, if we insert Bayes
theorem (13.3) into (13.5) we get

pacc(Λ′|Λ) =
p(M|Λ′)p0(Λ′)
p(M|Λ)p0(Λ)

pprop(Λ|Λ′)
pprop(Λ′|Λ)

, (13.6)

and we see that if the proposal function samples from the prior, i.e.
pprop(Λ|Λ′) = p0(Λ), the acceptance probability is only determined
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by the likelihood

pacc(Λ′|Λ) =
p(M|Λ′)
p(M|Λ)

. (13.7)

The uncertainty in reservoir modeling is specified in a hierarchy
where a set of parameters, {λ}, are specified with explicit prob-
ability distributions. The ensemble of reservoir realizations thus
represent the joint probability

p({λ} , Λ) = p({λ}) p(Λ| {λ}), (13.8)

where ensemble members, Λ, are sampled from the conditional dis-
tribution p(Λ| {λ}) using a mixture of Markov Chain Monte Carlo
simulation (typically for the object model) and more direct stochas-
tic methods such as sequential Gaussian simulation (typically for
the property model).

13.4 Conditioning to dynamic data

Production data has historically been used to tune the properties
of typically a single model realization in a process called history
matching. The resulting modified realization is called a history History matching

matched model and is used as a base case model representing
some sort of best guess reservoir. In order to say something about
uncertainty, which is required in most situations,4 it is added to 4 As an example: Norwegian au-

thorities require p10, p50, and p90
estimates in all resource reporting and
production forecasting.

the base case prediction from separate uncertainty estimates. These
uncertainty estimates can be based on the spread in predictions
in an original, not history-matched, ensemble, or calculated by
running a parameter based sensitivity analysis around the base
case. None of these approaches take dynamical data into account
in an appropriate manner, and are not really statistically sound. A
number of improved approaches have been developed, however
all of these have their own, often severe, limitations. Methods for
conditioning to dynamic data remain an active field of research.

Dynamic data are all measurements that are related to the dy- Dynamic data

namic behavior of the reservoir. This includes production and in-
jection data, bottom-hole and top-side pressures in wells, saturation
and pressure data from observation wells, and repeated seismic
or gravimetric data. The model used for observation likelihood is
invariably based on the difference between observed, M, and simu-
lated, S, behavior, often assuming a Gaussian model

p(M|λ) ∝ exp
(
− (M − S(λ))2

σ2

)
. (13.9)

Standard Monte Carlo methods for generating a representative en-
semble requires evaluation of the likelihood S(λ) at least tens of
thousands of times. These methods can thus not be directly applied
in practice for real reservoir models since evaluation of S(λ) for
dynamic data involves running the reservoir simulator, which rep-
resents a significant CPU and wall-clock running time, typically in
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the order of hours for a reservoir simulation. On the other hand,
Ensemble Kalman methods only require the evaluation of the like-
lihood for each member of the prior ensemble. This makes them
very attractive in the context of conditioning to dynamic data, but
they are unfortually difficult to apply correctly for many reservoir
models. As mentioned above the main limitation of the ensemble
Kalman methods is that one has to give mathematical meaning to
the concept of “linear combinations of reservoirs”. Also a linearity
assumption is made when calculating the likelihood of this linear
combination. The impact of the latter limitation can however be
reduced by applying an iterative method, conceptually similar to
Newtons method (see Chap.10.1.3), at he cost of running the reser-
voir simulator again for each ensemble member at each iteration.

Historically the ensemble Kalman methods for conditioning to
dynamic data was introduced in the form of the ensemble Kalman
filter, which is a method closely coupled to the simulator. An up- ensemble Kalman filter

dated ensemble is created at regular intervals over the historic
period, and each member carried forward in time to the next up-
date. The updated ensemble members contain both an update of
the static model and the dynamic state, such as saturations and
pressure. The filter will in this way ideally correct for any mod-
elling errors in the simulator and give an improved picture, e.g., of
remaining oil, than just running an updated static model ensemble
through history and into prediction. This ideal picture is however
usually not obtained in practice. The resulting saturation patterns
are often unphysical. Due to the unlinearity in the reservoir-to-
dynamic-response function, the ensemble will also experience en-
semble collapse at certain points in history where observations that
are improbable given the current ensemble are made. As a conse-
quence of these shortcomings it is now more common to employ
the simpler ensemble Kalman smoother methods. In these methods ensemble Kalman smoother

the Kalman update is made once on the static model alone using all
observations5. 5 See Evensen (2018) and references

therein for details on the ensemble
Kalman smoother methods

An alternative approach is to replace the reservoir simulator with
a fast surrogate function. The surrogate can be based on simple func- Surrogate function
tions, such as polynomials, or more elaborate machine learning al-
gorithms. In all cases the surrogate is used to calculate the reservoir
response corresponding to measurements for model realizations, in
order to evaluate the likelihood in Markov Chain Monte Carlo sam-
pling. When simple functions are used, there is a separate surrogate
for each measurement, often called a response surface.

Just like the ensemble Kalman methods the surrogate function
methods can be applied on the simulation model level. However,
while the Kalman methods can work with full property fields with
porosity, permeability, etc. in each grid block, the surrogate meth-
ods are limited to working with a much coarser description such as
average permeability in a zone, or parameters that describe relative
permeability. This is similar to traditional history matching work-
flows. The parameters in the coarse description must be assigned
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Figure 13.2: Example of the
measured water cut in a well
(Black squares). Two simulated
water cuts in red and blue. We
see that the errors are highly
correlated between consecu-
tive points as illustrated by
the red and blue arrows. An
alternative characteristic mea-
surement, break through time,
here defined as time when the
water cut reaches 0.15, with
corresponding simulated val-
ues, are shown as circles on the
time axis.

prior probability. This should preferably be derived from an anal-
ysis of proper prior ensembles, but is in practice often to a large
extent based on the engineers gut feeling.

Unlike for Kalman methods the likelihood model used in surro-
gate methods need not be Gaussian (13.9). This is however usually
the case. One reason for this is that it is easier to combine various
sources of error in a Gaussian error model since variances are ad-
ditive. The error model standard deviation σ, represents to which
degree a surrogate-predicted value can be expected to match a
corresponding measured value. The three main error sources are
measurement error σmeas, model error σmodel, and surrogate error
σsurrogate:

σ2 = σ2
meas + σ2

model + σ2
surrogate . (13.10)

The measurement error represents the actual accuracy of the mea- Measurement error

surement. Note that many measurements are not direct, but involve
an interpretation model. The accuracy of this interpretation model
must be accounted for in the measurement error. The model error Model error

is mainly the many-to-one statistical spread discussed earlier, but
may also include a contribution from an unknown bias. Note that
the surrogate model descriptions are much more coarse grained
than the actual reservor simulation model realizations. This corre-
sponds to a larger model error in the surrogate based methods than
in ensemble Kalman updating that work directly with these real-
izations. An additional surrogate error correspond to the difference Surrogate error

between the actual simulator response and the not perfect surrogate
function.

We see from (13.3) that we, for a set of independent measure-
ments, can can apply Bayes theorem sequentially and get a product
form for the likelihood. For a Gaussian likelihood model this corre-
sponds to

ln p({M} |Λ) = −∑
n

(Mn − Sn(Λ))2

σ2
n

. (13.11)

For many dynamic measurements the model errors are highly Correlated model errors

correlated. As an exampe, if the error in simulated water cut in a
well is positive one day, it is highly probable that it will be too high
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also a month later, as illustrated in Figure 13.2. The form (13.11) is
not applicable to such correlated measurements, and its direct use
will lead to severe overfitting and underestimated uncertainty. In
theory the correlations can be accounted for in the Gaussian model
by replacing the variances σ2

n with a the covariance matrix C, which
gives

ln p({M} |Λ) = −∑
nm

(Mm − Sm(Λ))Cinv
mn (Mn − Sn(Λ)) , (13.12)

where Cinv is the inverse covariance matrix. There are two main
reasons why this formulation is usually not applicable in practice:
it is very difficult to get good estimates for the covariance, and even
with very good covariance estimates the estimated inverse covari-
ance will be very inaccurate. A full multivariate Gaussian is also
usually not a good error model. It is better to select a drastically Select measurements that characterize

the data typereduced number of measurements that characterize the behavior
of the data type, and use the uncorrelated error model as given by
Eq. (13.11). For the water cut measurements shown in figure 13.2,
we could for example replace the direct measurements with the
break through time and the final water cut.

The surrogate methods are very suitable for big- loop updating. Surrogate methods in big loop updat-
ingWhat is meant by big loop here is an update of geo model param-

eters based on dynamic data. See for instance Slotte and Smorgrav
(2008), where among other things fluvial reservoir channel direc-
tions are updated, for an early example. In this case the surrogate
represent the total geo modelling process followed by reservoir sim-
ulation. Note that, since the geo modelling is stochastic, an extra
error term, that represent the stochastic spread given a fixed pa-
rameter set, must be added to the error in Eq. (13.10) in big loop
updating.
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Full field reservoir simulation model

The hammer of the gods
Will drive our ships to new lands
To fight the horde, sing and cry
Valhalla, I am coming

Led Zeppelin - Immigrant Song

In this chapter we will present a full field reservoir simulation
model, as it is used in the industry. We will present how to run the
model, how to analyze the simulation results, and how to modify
the model. Throughout we will use the Norne model, a model of an
oil and gas reservoir situated in the Norwegian Sea.

14.1 Norne

Figure 14.1: A picture of the
Norne FPSO; Norneskipet. The
ship was build in Singapore,
and has a storage capacity of
115 thousand ton. The gas flare
can be seen at the stern of the
ship. (Foto: Equinor.)

Norne is a oil and gas producing field situated of the coast of The Norne field is named after the
Norns from Norse mythology. The
Norns are goddesses that control the
destiny of both humans and æsirs (i.e.
a type of Norse gods, including Odin
and Thor).

mid-Norway, north-west of Trondheim. The Norne field is approx-
imately 80km north of the larger Heidrun field, and all the fields in
this area are operated from Stjørdal. The Norne field is owned by
Petoro (54%), Equinor (former Statoil, 39%) and Vår Energi (7%),
and the field is operated by Equinor.

Norne was discovered in 1992, and brought on stream on 6th
November 1997. The field has been developed with a production,
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storage and off-loading vessel (FPSO), connected to seven subsea
wellhead templates. The FPSO, Norneskipet, is seen in Fig. 14.1.
The ship is moored to a rotating turret at the seebead, with risers
and umbilicals connected to the same turret. The FPSO has a pro-
cessing plant, and can store the processed oil. The oil is loaded onto
tankers for export, while gas is exported through pipeline to the
Åsgard field, and further to the Kårstø terminal in Rogaland for
processing, before most is exported to Germany.

Figure 14.2: A snapshot from
the NPD website showing the
outline of the Norne field. The
green color indicates oil, while
the red color indicates gas.
Thus the green-red stripes of
Norne indicates that this is an
oil and gas reservoir.

The water depth at Norne is 380m, while the reservoir lies at a
depth of 2500m. The reservoir consist of Jurassic sandstone of good
quality. An outline of the reservoir is shown in Fig. 14.2. The reser-
voir is divided into the Tilje, Tofte, Ile, Not and Garn formations
(where Tilje is the deepest, while Garn is the shallowest part). Oil
is mainly found in the Ile and Tofte Formations, and gas in the Not
and Garn Formation. The main recovery strategy is water injection.
Earlier, produced gas was re-injected to avoid expansion of the gas
cap due to pressure depletion. Gas export started in 2001, and gas
injection stopped in 2005. From then all gas was exported.

The oil production reached 11MSm3 in 2001, and has been de-
clining ever since. The original plan was to shut down the field in
2014, but the planed production period has been extended several
times. The latest extension was granted in 2019. Gas blowdown in
the Not formation started in 2019, and two production wells are
planned for 2020. The satellite fields Alve, Urd, Skuld and Marulk
are all tied-back to the Norne FPSO.

14.2 Reservoir simulation model

A version of the Norne full field simulation model was released
by Equinor through the NTNU program Center for Integrated
Operations in the Petroleum Industry. This NTNU program has
expired, but the Norne model is still available through the OPM
github pages under an open license. The full data set can be found
in the Norne subfolder at https://github.com/OPM/opm-data. The
full OPM data set can be cloned to your computer by the following
command:

git clone https://github.com/OPM/opm-data.git

An alternative to using git is to download the files from the web-
page.

The Norne model is a reservoir model of the Norne field de-
scribed above, which has been history matched up to December
2006. The simulation grid has 46× 112× 22 = 113344 cells, of which
44927 cells are active. The grid is a faulted corner-point grid, and
the permeability field is heterogeneous with directional-dependent
permeability. The 22 layers in the vertical direction represent differ-
ent formations, as shown in Table 14.1.

The Norne model is a black oil model, which contains water, oil,
gas, dissolved gas and vaporized oil. The model use end-point scal-

https://github.com/OPM/opm-data
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Layer Formation Layer Formation
1 Garn 3 12 Tofte 2.2
2 Garn 2 13 Tofte 2.1.3
3 Garn 1 14 Tofte 2.1.2
4 Not 15 Tofte 2.1.1
5 Ile 2.2 16 Tofte 1.2.2
6 Ile 2.1.3 17 Tofte 1.2.1
7 Ile 2.1.2 18 Tofte 1.1
8 Ile 2.1.1 19 Tilje 4
9 Ile 1.3 20 Tilje 3
10 Ile 1.2 21 Tilje 2
11 Ile 1.1 22 Tilje 1

Table 14.1: Table relating the
layers in the Norne model to
the different formations.

ing and hysteresis for the saturation functions (i.e. for the relative
permeability and capillary pressure curves). Oil is mainly in the Ile
and Tofte formations, while gas is mostly in the Garn formation.
The Not formation is inactive, thus it represents a barrier to flow
upwards.

The model is divided into 16 fluid in place regions, defined
using the FIPNUM keyword. These fluid in place regions give the
intersection of the Garn Ile, Tofte and Tilje formations and different
segments of the reservoir. The distribution of the fluid in place
regions are shown in Fig. 14.3.

Figure 14.3: The FIPNUM key-
word in the Norne reservoir
model.

The reservoir model has five equilibrium regions where the
oil-water contact and gas-oil contact are defined. These regions
are defined using the keyword. This data is used to initialize the
model; from the given fluid-contacts the saturation distribution
and capillary pressure are calculated for all grid cells. Note that
the different regions have different height for the fluid contacts; the
oil-water contact varies between 2585m and 2692m for the different
equilibrium regions. The distribution of the equilibrium regions are
shown in Fig. 14.4.

Additionally, the reservoir model has transmissibility multipliers
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Figure 14.4: The EQLNUM
keyword in the Norne reser-
voir model.

(for faults), pressure-dependent porosity and transmissibility, end-
point scaling for relative permeability and capillary pressure and
history-matched production well controls that change throughout
the simulation schedule. The model is thus quite complex.

There are very few examples of actual full-field reservoir models
that have been released, as most companies consider the models as
information that is valuable to keep proprietary. For that reason,
this Norne model has been used in a wide range of reservoir simu-
lation studies in academia, and is featured in a number of scientific
papers.
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Optimization

Things are going great, and they’re only
getting better
I’m doing all right, getting good grades
The future’s so bright, I gotta wear shades

Timbuk 3 - The Future’s So Bright

In this chapter we will give a brief introduction to optimization
routines for reservoir models. The chapter is centered around pos-
sibilities in the software FieldOpt, developed at NTNU. For a general
introduction on FieldOpt, please confer (Baumann et al., 2020).

15.1 Optimization

We have already touched upon optimization several times in this
book. As an example, we used the Python library optimize.fmin

to find the front saturation for our Buckley-Leverett derivations
in Sec. 9.3, and we used Newton’s method in our fully-implicit
solution to incompressible flow in Sec. 10.1.3. Optimization is a
mathematical discipline on finding the best element from a set of
available alternatives. For our purpose, it is about finding the set of
input variables x0 that will maximize or minimize a function f (x).
Here f is called the objective function. Objective function

The simplest optimization problems are to find a minimal or
maximal value of a real-valued function f (x) ∈ R for a scalar
x ∈ R. For the minimization problem, we then want to find the
value x0 such that

The symbol ∀ means for all.
f (x0) ≤ f (x) ∀x ∈ R . (15.1)

More generally, the input is not necessarily a scalar x ∈ R, but
a set of variables x = {x0, x1, . . . , xn} where these variables can
be of any type, e.g., logical values (Boolean data), integers etc., in
addition to scalar values. Examples of logical values are well type
(producer versus injector) or well status (open versus shut), an
example of integer value is well placement in a indexed grid (the
index value (i, j, k) ∈ N3 for a perforated part of the well), while
scalars could be well rate or bottom hole pressure.
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We usually denote the space of possible variables as X, so x ∈ X.
Further, we may only use variables inside a restricted domain, such
as a subset of the integers or real numbers, so we only allow for
x ∈ S ⊂ X. We say that the arguments of the maxima are the points Arguments of the maxima: arg max

in S that maximize the objective function f : X → R:
The ∧ symbol means and.

arg max
x∈S⊂X

f (x) = {x | x ∈ S ∧ f (y) ≤ f (x) ∀ y ∈ S} . (15.2)

From this definition, there might exist several elements in
arg max f .

Reservoir simulations main purpose is input to decision-making
processes for field development. These decisions can require an op-
timal drainage strategy (together with uncertainty), thus they push
for optimization of the simulation model. The objective function for
field development decisions is usually the net present value (VNP)
of the drainage scenario for the simulation model. Such net present
value calculations can be complex; they might account for cost of
water injection, water treatment, CO2 tax, etc., in addition to the
prize of oil which is dependent on an uncertain oil price. The net
present value can be calculated as

Net present value

VNP =
Nω

∑
ω=1

Nτ

∑
τ=1

Cω(t(τ))cω(t(τ))
(1 + dω)t(τ)

, (15.3)

where Cω is the amount of property ω, t(τ) is the time at time-
step τ, cω is the earnings or costs of property ω, while dω is the
discount rate of property ω. The properties ω we are summing over Discount rate

could be produced oil, injected water, produced water etc. If ω is
the property produced oil, then Cω will be the amount of produced
oil, while cω will be the price of oil. A discount rate of about 8% is
common, and it is common to use the same discount rate dr for all
properties, thus dω = dr for all ω.

The Newton’s method, as presented in Sec. 10.1.3, use the deriva-
tive of the function in each iteration step when searching for the
point where the function is zero. The derivative is often used for
effective optimization methods. One such method is gradient de-
scent, which is an iterative algorithm for finding a minimum of the Gradient descent

objective function. The gradient descent is iteratively given as The step size in the gradient descent
could change between the iterations.
For certain functions there exist con-
ditions on the step size to ensure
convergence, e.g., the Wolfe condition.

x(m+1) = x(m) − γ∇ f (x(m)) . (15.4)

For a single variable, the gradient descent method simplifies to

x(m+1) = x(m) − γ f ′(x(m)) . (15.5)

When an analytical expression for the gradient (derivative) of the
objective function is available, this is what will be used. When the
analytical gradient is not available, one can use a finite difference
quotient instead.

However, there are several issues with methods employing the
gradient. The first is that they tend to find a local minimum instead Convergence to a local minimum
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2.5 Figure 15.1: Application of the
gradient descent method to a
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of a global minimum. As an example, look at the function

f (x) = cos(2πx)− x + 2 , (15.6)

which is plotted as the blue line in Fig. 15.1. Starting with x(0) =

0.9 and a step size γ = 0.05, the three first iterations will be as
indicated in the figure. We see that the solution converges to a local
minimum. This is a general problem with methods based on the
gradient of the objective function.
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Figure 15.2: Plot of the objec-
tive function with different
level of smoothness.

Another general problem with gradient based methods is that
they require smooth objective functions. Assume we applied the
gradient descent method to the leftmost figure in Fig. 15.2. The
derivative would be highly erratic, which will impair the gradient
descent method (and any other method that is based on the gra-
dient). When the erratic nature of the objective function occurs at
a smaller scale, such as in the rightmost figure in Fig. 15.2, the fi-
nite difference quotients could work as an approximation for the
gradient of a smoothed version of the objective function.

15.2 Derivative-free optimization

When the objective function is non-smooth and computationally
costly to compute, then methods that rely on the gradient of the
objective function can be problematic, as indicated in the previ-
ous section. For such cases it is therefore common to use so-called
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derivative-free optimization methods (aka. direct search meth-
ods, i.e., methods that do not use the gradient to find the optimal
solution. In other words, derivative-free methods do not use the
derivatives of the objective function f with respect to the set of
input variables x.

For complex reservoir models we do not have analytical deriva-
tives for the objective function with respect to input variables. As
an example, assume the objective function is the net present value
and the input variable is bottom hole pressure for a producer. Then
we do not have an analytical expression for the derivative of the net
present value with respect to changes in bottom hole pressure for
the producer. Since reservoir models are heavy to run, calculating
the finite difference quotient for the net present value with respect
to the bottom hole pressure is computationally costly, and there-
fore challenging for a large number of finite difference quotient
evaluations. While changing the operational conditions for a well
could be assumed to give fairly smooth response to the net present
value, moving the well around in the reservoir for optimization of
well placement could be expected to be highly non-smooth. Thus
optimization with reservoir simulation models are ill suited for
optimization methods that rely on derivatives.

Conversely, with modern day computer clusters, one can run a
set of reservoir models in parallel. This favors optimization meth-
ods which allows for many objective function evaluations simulta-
neously. As the reservoir models might have significant different
running times, it also favors methods where the objective function
can be evaluated at different times.

There exist a large range of derivative-free optimization meth-
ods. The most famous might be the Nelder–Mead method, which
is one of the methods implemented in FieldOpt. Pattern search (also
known as compass search) is a method that shares similarities with
Nelder-Mead, and is also implemented in FieldOpt. While Nelder-
Mead use n + 1 objective function values in each iteration step
(where n is the dimension of the problem, i.e., the dimension of x),
the pattern search method use 2n + 1 values. Asynchronous parallel
pattern search (APPS) is a version of pattern search that allows for
the function evaluations a different times, and is also included in
FieldOpt (Hough et al., 2001). Further, the particle swarm optimiza-
tion (PSO) (Floreano and Mattiussi, 2008; Onwunalu and Durlofsky,
2010), genetic algorithm and a model-based derivative-free trust-
region algorithm (DFTR) (Silva et al., 2022) are also included in
FieldOpt. We will give a brief intro to the pattern search method in
the following.

15.2.1 Pattern search

Pattern search is a simple method for searching for the optimal
solution. If the parameter space x ∈ Rn is n-dimensional in the real
numbers, then the pattern search method calculates the objective
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function in all directions in the n-dimensional space.
Let D = {d0, d1, d2, . . . , d2n} be a set where d0 = 0 is the zero

vector, while di for i > 0 are the 2n directions in the n-dimensional
space. Here ∥di∥ = 1 for all i > 0. Further, let f : Rn → R be the
objective function, ∆t a tolerance and γ a step-length contraction
factor. Let x(0) ∈ Rn be the starting point, and an initial step-length
is given by ∆(0).

For each iteration m, there exists a i ∈ [0, 2n] such that
f (x(m) + di∆(m)) is maximal, i.e. f (x(m) + di∆(m)) ≥ f (x(m) + dj∆(m))

for all j ̸= i. If i = 0, then the largest function value is the cur-
rent point. We will then stay in the same point, while we reduce
the step-length by a factor γ, thus we let ∆(m+1) = γ∆(m) and
x(m+1) = x(m). When i ̸= 0, then the function is larger at the
point in direction di. We will then move to this new point with
higher function evaluation, while we keep the step-length the same:
∆(m+1) = ∆(m) and x(m+1) = x(m) + di∆(m).

This can be implemented in Python as:

## Pattern search (Compass search)

# Initial point, and step length

afCentralPoint=(-1.0,1.0)

fStepLength=0.5

# Tolerance, and contraction factor

fTolerance=0.1

fContraction=0.5

# Search directions

aafDirections=np.array

↪→ ([[0.0,0.0],[-1.0,0.0],[0.0,-1.0],[1.0,0.0],[0.0,1.0]])

while (fStepLength>fTolerance):

plotCross(afCentralPoint,fStepLength,aafDirections)

afTestPoints=np.copy(aafDirections)*fStepLength

afTestPoints[:,0]=afTestPoints[:,0]+afCentralPoint[0]

afTestPoints[:,1]=afTestPoints[:,1]+afCentralPoint[1]

iMaxDir=np.argmax(hObjectiveFunction(afTestPoints[:,0],

↪→ afTestPoints[:,1]))

if iMaxDir>0:

print(’Move central point’,iMaxDir,afCentralPoint,(

↪→ afTestPoints[iMaxDir,0],afTestPoints[iMaxDir,1]))

afCentralPoint=(afTestPoints[iMaxDir,0],afTestPoints[iMaxDir

↪→ ,1])

else:

print(’Reduce step size’,fStepLength,fStepLength*fContraction)

fStepLength=fStepLength*fContraction

For visualization purposes, assume we are in a two-dimensional
space, n = 2, and consider the function:

f (x, y) = −x∥(3 − x)x − 3y + 1∥ 7
3 − ∥(3 − y)y − x + 1∥ 7

3 (15.7)

In the code snippet above we have started at the point x(0) =

(−1.0, 1.0), and we are using a contraction factor of γ = 0.5. Run-
ning the code gives a development as shown in Fig. 15.3.

We see that in the first four iterations the point x is moved while
the step-length is kept constant, while in the fifth iteration the step-
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Figure 15.3: Application of the
pattern search method with
the objective function given
by Eq. (15.7). The red circles
are the points x(m), where
the numbers represent the
iteration step m.

length is reduced by a factor γ = 0.5. Thus, in Fig. 15.3 there are
no number m = 5, as this iteration is not moving the point x. At
iteration step 6 the point is moved left, while step 7 is a reduction
of step-length size again. At step 8 the point moves right. Finally,
at step 9 the step-length is reduced to a length smaller than the
tolerance, which stops the iterative process.

As reservoir simulations are heavy, it is the computational time
of the object function evaluations that is the limiting step for our
optimization. However, it is possible to evaluate all the different
directions in D in parallel. This will speed up the optimization
significantly. Unfortunately, there might be large differences in
simulation time for the different models, some might not even
converge. We therefore want an optimization method that can
continue without obtaining the function evaluation in all directions.
Such a method is asynchronous parallel pattern search (APPS)
(Hough et al., 2001). Whenever a lower objective function value is
found, the APPS method will start calculating new directions from
this new lower function value point. The remaining directions in
the previous point are still calculating, and could still yield lower
function values which would initiate new trial directions. This way
the APPS method can reach the optimal solution faster than the
standard pattern search method. It will however run more function
evaluations in parallel.
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15.2.2 Nelder-Mead

The Nelder-Mead method (aka. downhill simplex method) is a nu-
merical method to find the extrema of a real-valued multi-variable
function. It is based on moving a simplex around by several simple
operations based on the function value in the corner points of the
simplex. The method was introduced by Nelder

and Mead (1965).A simplex is a generalization of a triangle to arbitrary dimen-
sions. A k-simplex is a polytope of k + 1 vertices in k-dimensional
space. It is a line in 1D, and a triangle in 2D.

Consider the variable space Rn, and a real-valued function
f : Rn → R that we want to maximize. Further, assume an initial
simplex described by the points x0, x1, x2, . . . , xn. The Nelder-Mead
method is given by iterating the following steps, where α, γ, ρ and σ

are reflection, expansion, contraction and shrink coefficients, respec-
tively: Common values for the reflection,

expansion, contraction and shrink
coefficients are α = 1, γ = 2, ρ = 1/2
and σ = 1/2.

1. Order: Order the test points (the corners of the simplex) accord-
ing to their function values, i.e., such that f (x0) ≥ f (x1) ≥
f (x2) ≥ · · · ≥ f (xn). Check whether to stop the algorithm by a
convergence criteria, e.g., if the standard deviation of the value
f (xi) is smaller than a tolerance value.

2. Centroid: Calculate the centroid xm of all points except xn:

xm =
1
n

n−1

∑
i=0

xi (15.8)

3. Reflection: Find the reflection point xr = xm + α (xm − xn), where
α > 0 is the reflection coefficient. If f (x0) ≥ f (xr) > f (xn−1), i.e.,
the function value at the reflection point is larger than the second
to smallest, but not larger than the best point, then we replace
the worst point with the reflection point, xn = xr. We have thus
obtained a simplex with better points, and return back to the
ordering in step 1. Else, if the reflection point is also better than
the best point, then we should consider moving even further in
the direction of the reflection point, so we continue with the next
point; expansion.

4. Expansion: If f (xr) > f (x0), i.e., the reflection point is the best
point, then we want to check if we should move even further
in the direction of the reflection point. For this end we do the
following:

• Find the expansion point xe = xm + γ (xr − xm), where γ > 1 is
the expansion coefficient.

• If f (xe) > f (xr), i.e., the expansion point is better than the
reflection point, then we replace the worst point with the
expansion point, xn = xe, and return to the ordering in step 1.

• Else if f (xe) ≤ f (xr), i.e., the reflection point is better than
the expansion point, then we replace the worst point with the
reflection point, xn = xr, and go to step 1.
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5. Contraction: If we arrive here, then we have f (xr) ≤ f (xn−1), thus
the reflection point is smaller than the second to smallest point.
If f (xr) > f (xn), i.e., the reflection point is better than the worst
point, then:

• Compute the contraction point on the outside as xc = xm +

ρ(xr − xm), where the contraction coefficient is 0 < ρ ≤ 0.5

• If f (xc) > f (xr), i.e., the contraction point is better than the
reflection point, then let xn = xc, and go to step 1.

• Else, if f (xc) ≤ f (xr), go to step 6.

If f (xr) ≤ f (xn), i.e., the reflection point is worse than the worst
point:

• Compute the contraction point on the inside as xc = xm +

ρ(xn − xm).

• If f (xc) > f (xn), i.e., the contraction point is better than the
worst point in the current simplex, then let xn = xc, and go to
step 1.

• Else, if f (xc) ≤ f (xn), go to step 6.

6. Shrink: In this case we have not been able to find any better
point through all the steps above. This indicates that the opti-
mal point is close to the current best point. We typically arrive at
this shrink part of the algorithm at late iterations, when we are
getting closer to convergence. As the current best point is prob-
ably close to the optimal point, we want to shrink the simplex
towards the current best point, i.e., towards the point x0. We do
this by moving all other points than the best point a factor σ to-
wards the best point: xi = x0 + σ(xi − x0) for all i ∈ [1, n], where
σ < 1 is the shrink coefficient. After shrinking towards the best
point we then go to step 1.

x2

x1

x0

xc

xs
2

xm

xr

xe Figure 15.4: A sketch of the
Nelder-Mead algorithm.

This can be implemented in Python as:

#Coefficients

fAlpha=1

fGamma=2

fRho=0.5
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fSigma=0.5

def updateFuncVal(aaSimplex):

for ii in range(0,3):

aaSimplex[ii,2]=hObjectiveFunction(aaSimplex[ii,0],aaSimplex[

↪→ ii,1])

return aaSimplex

def updateFuncValSingle(aPoint):

aPoint[2]=hObjectiveFunction(aPoint[0],aPoint[1])

return aPoint

def sortPoints(aaSimplex):

iChange=1

while iChange>0:

iChange=0

if aaSimplex[0,2]<aaSimplex[1,2]:

aPointTemp=np.copy(aaSimplex[0,:])

aaSimplex[0,:]=np.copy(aaSimplex[1,:])

aaSimplex[1,:]=np.copy(aPointTemp)

iChange+=1

if aaSimplex[1,2]<aaSimplex[2,2]:

aPointTemp=np.copy(aaSimplex[1,:])

aaSimplex[1,:]=np.copy(aaSimplex[2,:])

aaSimplex[2,:]=np.copy(aPointTemp)

iChange+=1

return aaSimplex

def hNedlerMead(aaSimplex):

#Calculate centroid

aCentroid=np.array([np.sum(aaSimplex[:-1,0])/2.0,np.sum(

↪→ aaSimplex[:-1,1])/2.0,0.0])

aCentroid=updateFuncValSingle(aCentroid)

#Find reflection point

aReflection=aCentroid+fAlpha*(aCentroid-aaSimplex[-1,:])

aReflection=updateFuncValSingle(aReflection)

if aReflection[2]>aaSimplex[1,2]:

if aReflection[2]<aaSimplex[0,2]:

#Replace the worst point with the reflection point

aaSimplex[2,:]=np.copy(aReflection)

else:

#Find expansion point

aExpansion=aReflection+fGamma*(aReflection-aCentroid)

aExpansion=updateFuncValSingle(aExpansion)

if aExpansion[2] > aReflection[2]:

aaSimplex[2,:]=np.copy(aExpansion)

else:

aaSimplex[2,:]=np.copy(aReflection)

else:

#Calculate contraction point inside or outside

if aReflection[2]>aaSimplex[2,2]:

aContraction=aCentroid+fRho*(aReflection-aCentroid)

aContraction=updateFuncValSingle(aContraction)

else:

aContraction=aCentroid+fRho*(aaSimplex[2,:]-aCentroid)

aContraction=updateFuncValSingle(aContraction)

if (aReflection[2]>aaSimplex[2,2] and aContraction[2]>
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↪→ aReflection[2]) or (aReflection[2]<=aaSimplex[2,2] and

↪→ aContraction[2]>aaSimplex[2,2]):

aaSimplex[2,:]=np.copy(aContraction)

#Shrink

else:

for jj in range(1,3):

aaSimplex[jj,:]=aaSimplex[0,:]+fSigma*(aaSimplex[jj,:]-

↪→ aaSimplex[0,:])

aaSimplex=updateFuncVal(aaSimplex)

return aaSimplex

aaSimplex=np.zeros((3,3))

aaSimplex[0,:-1]=[0.0,0.0]

aaSimplex[1,:-1]=[1.2,0.0]

aaSimplex[2,:-1]=[0.0,0.8]

aaSimplex=updateFuncVal(aaSimplex)

aaSimplex=sortPoints(aaSimplex)

fEps=1E-2

iMaxIt=20

fMaxError=np.sqrt((aaSimplex[0,2]-aaSimplex[2,2])**2)

fError=fMaxError

plotSimplex(aaSimplex)

ii=0

while ii<iMaxIt and fError>fEps:

ii+=1

aaSimplex=hNedlerMead(aaSimplex)

sortPoints(aaSimplex)

fError=np.sqrt((aaSimplex[0,2]-aaSimplex[2,2])**2)

print(’Iteration ’,ii,’ Error: ’,fError)

plotSimplex(aaSimplex)

For visualization purposes, assume we are in a two-dimensional
space, n = 2, and consider the same function as was used in the
pattern search example, Eq. (15.7)

In the code snippet above we have started with the simplex given
by the points (0, 0), (1.2, 0) and (0, 0.8), and we are using the stan-
dard coefficients. Running the code gives a development as shown
in Fig. 15.5.

15.2.3 Particle swarm optimization

The particle swarm optimization is an evolutionary algorithm for
optimization inspired by biological systems, e.g., a flock of bird
or a shoal of fish searching for food or avoiding predators. When
searching for food (or any other collective task), the swarm is shar-
ing information and cooperating in their search. The algorithm was
first developed to simulate social behavior (Eberhart and Kennedy,
1995), but is today applied to a wide range of applications. The version of PSO implemented in

FieldOpt is inspired by Floreano and
Mattiussi (2008). PSO in FieldOpt has
been applied for well placement opti-
mization in (Floreano and Mattiussi,
2008).

The algorithm optimize a problem by iteratively testing out new
possible positions, where new test positions are determined by
using a combination of local and global information. The swarm
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consists of the set of candidate solutions, often called particles,
and these particles are moved around in the search-space hunting
for the optimal solution. The movement between each iteration is
individual for each particle, where the speed and direction is deter-
mined by the current speed (inertia), the best position encountered
by the given particle (memory), and the best position encountered
by any of the particles in the swarm (collaboration).

As before, let f be the objective function that we want to max-
imize, and let xk

i be particle i ∈ [1, N] at iteration k, where N is
the number of particles in the swarm. For each particle i and each
iteration t, we find the best historic position for this particle as

pt
i = {xk

i | f (xk
i ) ≥ f (xl

i) ∀ l ∈ [1, t]} . (15.9)

The best position of all particles, i.e., the global best position, is
then found as

gt = {pt
i | f (pt

i) ≥ f (pt
j) ∀ j ∈ [1, N]} . (15.10)

All the particles are initialized with a velocity v0
i (possibly a zero

velocity). This velocity is updated in each iteration to guide the
particles towards the best position, where by best we mean a combi-
nation of the particle pt

i and global gt best positions. The updated
velocity at each iteration is then given by the equation

vt+1
i = vt

i + c1(pt
i − xt

i) + c2(gt − xt
i) , (15.11)

where c1 and c2 are factors weighting the relative importance of the
particle and global best position, typically called learning factors
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(also known as acceleration factors). It is also common to add some
randomness by multiplying the learning factors by random num-
bers, where the random numbers are updated for each iteration.
After obtaining the velocity vector, we move the particle as follows:

xt+1
i = xt

i + vt+1
i . (15.12)

In effect, the particle then moves towards a combination of the
best position for the particle and the best position for the swarm.
This mix of a particle and global best position has the benefit that
the swarm of particles explore the search space before converging
to the global best position. It is possible to tune this process by
changing the learning factors; if c2 is increased relative to c1 the
particles will converge towards one position earlier, thus speed up
the convergence, on the expense of a less throughout exploration of
the search space.
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Good advice from Khalid Aziz

Khalid Aziz, an undisputed Nestor in the field of of reservoir simu-
lation, has given the following good advise (Aziz, 1989).

Ten golden rules of reservoir simulation

Khalid Aziz, SPE

Stanford University

With the proliferation of reservoir simulators and extensive use of this powerful technology by the industry, there

is increasing danger that inexperienced users will misuse sophisticated models available to them. To minimize this

danger, one should keep certain basic rules in mind. The following rules reflect my own experience and what I have

gained by reading papers and through discussions with colleagues in industry and academia.

1. Understand Your Problem and Define Your Objectives. Before you do any simulation, understand the ge-

ological characteristics of your reservoir, the fluids it contains, and its dynamic behavior. Also clearly state the

objectives of your study on paper before you start. Ask yourself if the objectives are realistic. These considerations

will help you choose the most appropriate model for your study.

2. Keep it Simple. Start and end with the simplest model that is consistent with the nature of the reservoir, the

objective of your study, and the availability of data. Classic reservoir engineering, simple analytical models, or

single-block simulations are often all you need. At other times, the most sophisticated model available to you may

not serve your needs. Understand model limitations and capabilities.

3. Understand Interaction Between Different Parts. Remember that a reservoir is not an isolated entity. It may

connect with an aquifer and, through it, even to other reservoirs. Furthermore, reservoirs are connected through

wells to the surface facilities. The isolation of different components of this system for separate study often may

lead to inappropriate results by neglecting interaction between different parts of the system. However, when ap-

propriate, don’t be afraid to break a big problem into its smaller components. This can lead not only to substantial

savings but to greater understanding of the mechanisms involved.

4. Don’t Assume Bigger Is Always Better. Always question the size of a study that is limited by the computer

resources or the budget. Simulation engineers often believe that no computer is big enough for what they want to

do and tend simply to increase the size of their models to fit the computer. More blocks and components do not

automatically translate into greater accuracy and reliability. In fact, in some situations the reverse is true. Insist on

seeing appropriate justification for the number of blocks used in a given study.

5. Know Your Limitations and Trust Your Judgment. Remember that simulation is not an exact science. All mod-

els are based on assumptions and provide only an approximate answer to the real problem. Hence, a good un-

derstanding of both the problem and the model is essential for success. Numerical approximations may introduce

"pseudophysical" phenomena like numerical dispersion. Use and trust your judgment, especially if it is based on
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your analysis of field or laboratory observations. Be careful to check your input and output. Do simple material-

balance calculations to check simulation results. Pay particular attention to such things as negative compressibili-

ties and permeabilities.

6. Be Reasonable in Your Expectations. Don’t try to get from the simulator what it is incapable of producing. Often

the most you can get from a study is some guidance on the relative merits of choices available to you. At other

times you have the right to demand a lot more. But remember that if you exclude a mechanism during model

development, you cannot study its effect with that model.

7. Question Data Adjustment for History Matching. Always question data adjustments during history matching.

Remember that this process does not have a unique solution. The most reasonable solution will result from paying

close attention to physical and geological reasonableness. A "good" history match with inappropriate adjustments

to the data will lead to poor predictions. Don’t be lulled into false security by a "good" or "close" match.

8. Don’t Smooth Extremes. Pay attention to extremes in permeability (barriers and channels). Be careful in the pro-

cess of averaging to avoid losing essential information when averaging the extremes. Never average out extremes.

9. Pay Attention to the Measurement and Use Scales. Measured values at the core scale may not apply directly

at the larger block scale, but measurements do influence values at other scales. Remember that averaging may

change the nature of the variables you average. For example, permeability may be a scalar at some small scale,

and a tensor at a larger scale. Even the meaning of capillary pressure and relative permeability can be different at

different scales. Also, the dispersive terms in our equations are a result of the process of averaging.

10. Don’t Skimp on Necessary Laboratory Work. Models do not replace good laboratory experiments that are

designed to gain an understanding of the nature of the process being modeled or to measure essential parameters

of the equations being solved by your simulator. Plan your laboratory work with the end use of this information in

mind. Learn how to scale data.

I would like to thank Aziz Odeh and Roland Horne for their comments on these rules.
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Mathematical notes

The notation that are used in these lecture notes may be unfamiliar
to some. The coordinate free notation that is used is more com-
mon in physics texts than in engineering books. Darcys law is for
instance written as

q = − 1
µ

K · ∇p

in coordinate free notation, instead of

qi = − 1
µ

3

∑
j=1

Kij
∂

∂xj
p

in the normal engineering type notation.

17.1 Scalars, vectors, and tensors

The fundamental objects in any continium theory, including fluid
flow in porous media, are scalar-fields, vector-fields, and tensor-
fields. This text folllows the common lazy tradition of using the
terms scalar, vector, and tensor for these fields.

All readers should be familiar with the concepts of scalars and
vectors, while tensors may be a less familiar object. In the context
of the present text, only tensors of order 2 is encountered1, and 1 The term tensor is usually not used

for scalars and vectors, but scalars can
be viewed as tensors of order 0 and
vectors as tensors of order 1.

the most prominent is the permeability, K. Permeability is a linear
operator that operates on a gradient (derivative of pressure) to
produce a vector (volumetric flux). Such operators are called (2,0)
tensors, or more simply tensors of order 2. The tensor concept
can be viewed as a generalization of a vector, and taking the so
called tensor product of two vectors create a tensor of order 2 (see
table 17.1).

No special notation is used in order to distiguish between
scalars, vecrtors, and tensors. However, lower case letters are typi-
cally used for scalars and vectors, and upper case letters for tensors.

Scalars, vectors and tensors can be multipled, either using the
dot product or the tensor product as shown in table 17.1.
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Coordinate free notation Index notation
v = au vi = aui

a = u · v a = ∑i uivi

v = K · u vi = ∑i Kijuj

v = u · K vj = ∑i uiKij

K = L · M Kij = ∑n Lin Mnj

K = uv Kij = uivj

Table 17.1: Multiplication of
tensors. a is a scalar, u and v
are vectors and K, L, and M
are tensors.

17.2 Spatial derivatives and the gradient operator

The operator for spatial derivatives is the nabla, or gradient, oper-
ator, ∇. In terms of notation, ∇ behaves like a vector, but it must
be remembered that ∇ operates on (takes the derivative of) the ex-
pression to the right. Some examples of expressions involving the
nabla operator can be found in table 17.2. The shorthand notation
∇2 is used for the second derivative operator ∇ · ∇ (the Laplace
operator). The derivation takes presedence over multiplication.
Paranthesis are used to group.

Coordinate free notation Index notation
∇ ∂

∂xi

∇2 = ∇ · ∇ ∂2

∂x2
i

∇∇ ∂2

∂xi∂xj

v = ∇a vi =
∂

∂xi
a

a = ∇ · v a = ∑i
∂

∂xi
ai

K = ∇∇a kij =
∂2

∂xi∂xj
a

b = ∇2a b = ∂2

∂x2
i

a

c = ∇a · K · ∇b c = ∑ij
∂a
∂xi

Kij
∂b
∂xj

c = ∇ · (aK · ∇b) c = ∑ij
∂

∂xi

(
aKij

∂b
∂xj

)

Table 17.2: Examples of expres-
sions involving the ∇ operator.
a, b, and c are a scalars, u and
v are vectors and K is a tensor.

We see in particular that the divergence of a vector field
q = (qx, qy, qz) is a scalar given by the dot product ∇ · q =
∂qx
∂x +

∂qy
∂y + ∂qz

∂z , that the gradient of a scalar field p is a vector field

∇p =
(

∂p
∂x , ∂p

∂y , ∂p
∂z

)
, and that the Laplace operator ∇2 sends a scalar

to a scalar.

17.3 The Gauss theorem, and the continuity equation

The Gauss divergence theorem: Gauss divergence theorem.∫
∇ · v dV =

∫
v · dS . (17.1)

v is a vector, the left integral is over a volume, and the right integral
is over the enclosing surface. Note that dS is an outward pointing
vector normal to the surface element.

The continuity equation for some entity involves three quantities:

• ρ: Density, that is the amount per volume.
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• j: Flux, that is the amount that flows per area and time (a vector).

• σ: The amount that is created per volume and time.

For any given volume we then have Continuity equation on integral form.

∂

∂t

∫
ρ dV =

∫
σ dV −

∫
j · dS (17.2)

This is the continuity equation on integral form. Numerical simula-
tion often employ control volume discretisation, and eq. 17.2 is then
applied to the each control volume or grid-block.

If we apply the Gauss theorem to the surface integral in eq. 17.2
we get

∂

∂t

∫
ρ dV =

∫
σ dV −

∫
∇ · j dV , (17.3)

and if we let the volume be an infinitely small differential element,
eq. 17.3 gives Continuity equation on differential

form.∂

∂t
ρ +∇ · j = σ , (17.4)

which is the continuity equation on differential form.

17.4 Localization theorem

The localization theorem states that for a continuous real-valued
function F(x) : X → R defined on an open connected set X (e.g.
X ⊂ R3 is an open connected subspace of R3), then Localization theorem∫

D
F(x)dx = 0 ∀D ⊂ X ⇒ F(x) = 0 ∀x ∈ X . (17.5)

In the setting of reservoir simulation, then X is the reservoir
volume, and the localization theorem can be used to obtain the
equation for conservation of mass from a reformulation of Eq. (3.34)
as: ∫

V
∇ · (ρq) +

∂

∂t
(ϕρ)dV = 0 ∀V ⊂ X , (17.6)

where V is an arbitrary control volume inside the reservoir V ⊂
X ⊂ R3.

Note that in physics it is common to start with the conservation
of mass of a moving fluid element, and then use Reynolds transport
theorem to obtain the equation above for any control volume, be-
fore using the localization theorem to obtain the local form of the
conservation of mass equation.

17.5 Big-O

When comparing approximations and the rate of convergence of
numerical methods, we will use the big-oh notation, indicated by
the symbol O. Let f and g be two functions of x, then we say that

f (δ) = O(g(δ)) as δ → 0 , (17.7)



242 reservoir simulation

if there exists a constants C such that∣∣∣∣ f (δ)
g(δ)

∣∣∣∣ < C ∀δ < ϵ , (17.8)

for a sufficiently small value ϵ. Rearranging, this gives

| f (δ)| < C|g(δ)| ∀δ < ϵ , (17.9)

thus f (δ) goes to zero at least as fast as the function g(δ) when δ

goes to zero.
As an example, we see that δn = O(δn). Since |δn/δn| = 1, let

C > 1, then for any ϵ we have∣∣∣∣ δn

δn

∣∣∣∣ < C ∀δ < ϵ . (17.10)

We say that an approximation is n-order accurate if the error
E(δn) = O(δn), where δ is the grid step size.
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Nomenclature

η (hydraulic) diffusivity, η = k
µϕct

, SI derived unit: m2/s

λ mobility, λ = krρ/µ

µ viscosity, SI derived unit: Pa s = kg/(m s)

Ω pore space, the subset of a volume V consisting of the void space in the porous medium, SI
derived unit: m3

Φ force potential, SI derived unit m2/s2

ϕ porosity, ϕ = Vc/Vt, dimensionless

ρ fluid density, SI derived unit: kg/m3

ρw water density, SI derived unit: kg/m 3

n⃗ normal vector

A surface, e.g. surface area of volume element, δV = A, SI derived unit: m2

B formation volume factor, dimensionless

Bg gas formation volume factor, Bg = Vgr/Vgs, dimensionless

Bo oil formation volume factor, Bo = Vor/Vos, dimensionless

c compressibility, SI derived unit: 1/Pa

cϕ formation compressibility, SI derived unit: 1/Pa

c f fluid compressibility

ct total compressibility

cw water compressibility, SI derived unit: 1/Pa

D diffusion coefficient, SI derived unit: m2/s

fw fractional flow of the wetting phase (water)

h pressure head, SI derived unit: m

J mass rate, SI derived unit: kg/s

j mass flux, SI derived unit: kg/(m2 s)

k permeability, SI derived unit: m2

m mass, SI derived unit: kg

P numerical approximation of the pressure

p pressure, SI derived unit: Pa=kg/(ms2)
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pa atmospheric pressure, 1.01 × 106 Pa

pb (well) block pressure, SI derived unit: Pa

pc capillary pressure, SI derived unit: Pa

pc characteristic pressure, pc =
Qµ

2πkh , SI derived unit: Pa

Pt
i numerical approximation of the pressure at spatial point i and time step t

pr reference pressure, SI derived unit: Pa

pw well pressure, SI derived unit: Pa

pBHP bottom hole pressure, SI derived unit: Pa

Q volume rate, SI derived unit: m3/s

q volumetric fluid flux (Darcy velocity), SI derived unit: m/s

qt total Darcy velocity

Qw well flow rate, SI derived unit: m3/s

qw wetting phase (water) Darcy velocity

R residual (in the Newton’s method)

re equivalent well-block radius, SI derived unit: m

Rs solution-gas-oil ratio, Rs = Vgs/Vos, dimensionless

Rv solution-oil-gas ratio, Rv = Vos/Vgs, dimensionless

rw well radius, SI derived unit: m

so oil saturation

sp saturation of phase p

sw water saturation

Twb well connection transmissibility factor, Twb = kh
ln( re

rw )
, SI derived unit: m3

u interstitial fluid velocity, SI derived unit: m/s

V volume

Vc connected pore space

Vf fluid volume

Vp pore volume

Vt total volume

Vgs volume of of gas with 100% gas component at standard conditions

Vor liquid phase (oil) at reservoir conditions

Vos volume of liquid with 100% oil component at standard conditions

Subscripts

f fluid

g gas

i + 1/2 the boundary between grid cell i and i + 1
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i spatial point represented by the grid index number i

o oil

p fluid phase, usually represents wetting and non-wetting phase, i.e. p ∈ w, n

r reference

r reservoir conditions

s standard conditions

w water

Superscripts

C upscaled coarse grid values

t time level
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Index

K-orthogonal, 111
CO2 sequestration, 189

advection-diffusion equation, 145,
146

arguments of the maxima, 226
asynchronous parallel pattern

search, 228, 230
averaging methods, 201

backward-difference quotient, 56
Bayes theorem, 214
bed, 12
bias, 211
big loop updating, 213, 219
big-oh, 241
black oil model, 17, 108, 132, 177, 222
block-centered grid, 62
bottom hole pressure, 195
boundary conditions, 64

Dirichlet, 64, 188
flow rate, 65
Neumann, 65, 188
pressure, 64
Robin, 66

Buckley-Leverett equation, 141

capillary limit
solution, 206
upscaling, 207

capillary pressure, 138, 204
capillary seal, 126
cell, 105
centered difference quotient, 57
centered second-difference quotient,

58
characteristic pressure, 97
compass search, 228
component, 17, 178
component lumping, 132
compositional model, 132
compressibility, 36

fluid, 36
formation, 37
total, 37

conservation of mass, 35
contact model, 122, 133
control volume, 34, 105
cornerpoint grid, 113
Crank-Nicholson formulation, 78
Crank-Nicolson

Euler method, 52
Crank-Nicolson method, 52

Darcy equation, 10, 32, 36
extended, 138, 204
gravity term, 204

Darcy velocity, 31
total, 140
wetting, 140

Delaunay triangulation, 115
density, 30, 35
derivative-free optimization, 228
derivative-free trust-region algo-

rithm, 228
difference quotient, 53

backward, 56
centered, 57
centered second-difference, 58
forward, 55
second-difference, 57

differential equation
ordinary, 26
partial, 26

diffusivity, 38
diffusivity equation, 37
direct search methods, 228
Dirichlet boundary conditions, 64,

188
discount rate, 226
divergence theorem, 35, 240
downhill simplex method, 231
dynamic data, 216
dynamic model, 16, 122

ecl, 92
elementary volume, 29

representative, 29
ensemble Kalman

filter, 217
methods, 215
smoother, 217

ensemble of realizations, 212
equation of state, 107
equivalent well-block radius, 98
Euler method, 49

Crank-Nicolson, 52
explicit, 50
implicit, 51

explicit
Euler method, 50
formulation, 72
method, 50

extended Darcy equation, 10, 138,
204

fault, 12, 113
Fick’s law

first, 146
second, 146

finite difference, 49
control volume methods, 108
mathematical definition, 49
method, 49

finite volume methods, 106
flow

keyword, 85
unified restart file, 92

flow based methods, 202
flow rate boundary conditions, 65
fluid compressibility, 36
fluid density, 35
fluid model, 122, 131
flux approximation

two-point, 108, 183
force potential, 33
formation compressibility, 37
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formation volume factor, 180
forward-difference quotient, 55
fractional flow, 140, 189, 205
framework model, 122, 123
fully-implicit method

black oil, 186
two-phase, 162

Gauss divergence theorem, 35, 240
genetic algorithm, 228
geological upscaling, 129
global flow based upscaling, 203
gradient descent, 226
gravity term, 204
grid, 105

block-centered, 62
cell, 105
cornerpoint, 113
local refinement, 115
mother-child, 131
orientation effect, 112
pillar, 113
point-distributed, 62
unstructured, 115
Voronoi, 114

grid block, 105

head, 31
history matching, 20, 216
hydraulic diffusivity, 38

IMPES, 156, 185
implicit

Euler method, 51
formulation, 75
method, 50

implicit pressure explicit saturation,
156

index system, 69
initial condition, 39
input deck, 85
isotropic, 33
isotropic permeability, 111

Jacobian, 162, 164, 187

keyword, 87
knowledge database, 14

learning factors, 235
local discretisation error, 55
local flow based upscaling, 202
local grid refinement, 115
localization theorem, 36, 241

mass conservation, 35
measurement error, 218

mixed boundary conditions, 66
mobility, 109, 153, 184
mobility weighting, 153
model error, 218
model realizations, 14
mother-child grid, 131

Nelder-Mead method, 231
Nelder–Mead method, 228
net present value, 226
Neumann boundary conditions, 65,

188
Newton method, 162
non-volatile, 178
Norne

field, 221
reservoir model, 222

numerical diffusion, 145, 194
numerical method

control volume, 108
finite difference, 49
finite volume, 106
single phase

Crank-Nicholson, 78
explicit, 72
implicit, 75

two phase
fully-implicit, 162
IMPES, 156

object model, 122, 126
objective function, 225
ordinary differential equation, 26
orientation effect, 112
orthogonal

K, 111

partial differential equation, 26
linear, 26
order, 26

particle swarm optimization, 228,
234

pattern search, 228
asynchronous parallel, 228

Peaceman model, 95, 188
permeability, 10, 30

anisotropic, 108
isotropic, 111
relative, 138

phase, 178
behavior, 178
gas, 179
liquid, 178
mobility, 184
oil, 179
supercritical, 190

pillar, 113

point-distributed grid, 62
pore space, 35
porosity, 10, 30, 35
preconditioner, 119
pressure

head, 31
pressure boundary conditions, 64
primary recovery, 13
production strategy, 123
property model, 122, 127
pseudo components, 17
pVT model, 131

rarefaction wave, 142
relative permeability, 138, 204
representative elementary volume,

29, 127
reservoir, 9
reservoir model, 10, 14

dynamic, 16
static, 16

reservoir modeling, 14
reservoir simulation model realiza-

tion, 10
reservoir simulator, 10
residual, 162
REV, 127
Robin boundary conditions, 66

saturation, 10, 137
scenario, 212
secondary recovery, 13
separation of scales, 128
separation of variables, 40
shared earth models, 14
shock front, 142
simplex, 231
simulation model, 11
small loop updating, 213
solution-gas-oil ratio, 180
solution-oil-gas ratio, 180
sparse matrix, 76
stability, 79

explicit, 81
implicit, 82
unconditional, 83
von Neumann’s criterion, 80

static model, 16, 122
stock tank oil, 179
storage capacity„ 10
storativity, 38
stratigraphy, 124
structural model, 123
supercritical, 190
surrogate error, 218
surrogate function, 217
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Taylor series, 54, 147
tertiary recovery, 13
thermodynamic equilibrium, 107
total compressibility, 37
total Darcy velocity, 140
transmissibility, 109, 153
transmissibility multiplier, 125
two-phase

fully-implicit, 162
two-point flux approximation, 108,

183

uncertainty
bias, 211
many-to-one spread, 211
total, 212

true, 211
unconditionally stable, 83
unified restart file, 92
unstructered grid, 115
upscaling, 197

capillary limit, 207
geological, 129
single phase

averaging methods, 201
flow based methods, 202

viscous limit, 208
upstream weighting, 153

viscosity, 30
viscosity correlations, 132
viscous limit

solution, 206
upscaling, 208

volatile, 178
volumetric fluid flux, 31
volumetric flux, 35
von Neumann’s criterion for stabil-

ity, 80
Voronoi grid, 114

regular, 115

well block pressure, 97
well inflow, 95
well model, 122, 134

segmented, 135

zero order errors, 112
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