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Preface

In June 2016 I was asked to lecture the well testing part of course TPG4115 Reservoir Property Determina-
tion by Core Analysis and Well Testing given to master students at NTNU. My knowledge of well testing at
that point was very limited, as I have had no formal training in reservoir technology, and have mainly been
working with reservoir modelling and data integration. Thus, the well known principle of learning by teach-
ing did apply, and these notes does, to a certain degree, sum up what I have learnt during the fall-semester
2016.

In previous years students hadmainly used the books “T.A. Jelmert: Introductory well testing” (bookboon
2013) and “J.W. Lee: Well Testing” (Society of Petroleum Engineers 1981) as their main study material. The
first of these does not cover all of the material students are expected to learn in the course, and additional
material is thus needed. The second covers most of the needed subjects, but it is old and the perspective
is to a certain degree outdated. The book has the additional drawback that it uses oilfield units and merged
numeric conversion factors throughout, which in my view only creates confusion. You can always derive
the right numeric factors from an equation given consistent units.

While still mentioning the books of T.A. Jelmert and J.W. Lee as possible material for the students, I
decided instead to use the book “Well test design and analysis” (PennWell Books 2011) by George Stewart as
main reference material. This book covers everything the students are expected to learn, and has a more
modern perspective. However, it covers a lot more than needed and it is totally out of the question that
students should be required to buy this 1484 page monster. However, students have access to the book in
electronic form through the NTNU library, so it was possible to run the course this way.

In order to give the students relevant readingmaterial in amore compact form I decided to create lecture
notes that was distributed incrementally. These notes only covered thematerial that was taught in lectures
and homework assignments in the fall-semester 2016, and very little else. There is much to be said about a
textbookwith such a limited scope, but I believe it is useful for the students to have some extendedmaterial
(in addition to lecture slides) that actually follow the progression of the lectures. I do, on the other hand,
have no actual practical experience in well-testing, neither in operations nor in research, so writing a full-
fledged textbook that could accompany the course was out of the question at the time. After the teaching
of the well-testing course was taken over by Carl Fredrik Berg in 2017, the notes have been a constant work
in progress. The present version is much improved and extended to a large extent due to contributions by
Carl Fredrik, and now has a scope similar to other textbooks on the market.

Well testing theory is quite heavy on mathematics compared to what petroleum students tend to be
exposed to in other courses. The notation that are used in these notes may also be unfamiliar to some, as
derivations and equations for the most part is presented using coordinate free mathematical objects and
operators. A chapter with mathematical notes have been included (page 149), and the reader is referred
there whenever in doubt about the meaning of an equation.

Trondheim
August 14, 2020
Per Arne Slotte
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1
Introduction

The well testing that is the subject matter of the current lectures are a
number of methods wherein rates and pressures are manipulated and
measured in one or more wells in order to obtain information about
the sub surface reservoir. Thus it is, in spite of the name, not the well
or well production that is tested, but the reservor. Note, however, that
the term well test is also used in production technology for tests that
actually test the well and the well production, but these tests are not
of interest here. Well testing is also known as pressure transient tests,
which arguably gives a better description of the test.

Well testing is important in many disciplines in addition to petro-
leum engineering. Examples are groundwater hydrology, geology,
waste disposal, and pollution control. The theory and methods are
in principle the same in all diciplines, although nomenclature may
vary somewhat. In this course we will concentrate on petroleum en-
gineering applications.

The purpose of reservoir characterisation in general is to provide
data for describing and modelling the reservoir in order to estimate
reserves, forecast future performance, and optimize production. The
testing of wells is especially important in exploration when reservoir
data is scarce. The data from well test contibute to reserve estima-
tion and are used to determine if reservoirs and reservoir zones are
ecomomic. Well testing is also used in reservoir monitoring, by pro-
viding average and local reservoir pressure. These pressure data are
important input to production optimization, but also contribute indi-
rectly to the reservoir characterization as input tomodel conditioning
(history matching).

In production engineeringwell testing also contribute by providing
data on the state of the near-well reservoir volume. These data are
used to answer questions about near-well formation damage, and the
need for and the effect of well stimulation treatments.

The basic concept of well testing is described in Fig. 1.1: A signal
is sent into the reservoir from the well by changing well production
rate or pressure, and the response (pressure/rate change) is measured
at the well. The analysis of the response is used to estimate reservoir
properties. Since the response is the result of a disturbance that travel
away from the well, the early responses are determined by the prop-
erty in the near well region, while later responses detect more distant
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Figure 1.1: The well test concept:
A signal is sent into the reservoir,
and a response is recorded. Early
response give information about the
formation, later responses detect
reservoir boundaries, and responses in
observation wells depend on reservoir
communication.

reservoir features. The responsemay also be recorded in another well
in order to investigate reservoir communication, this type of test is
called an interference test,

Typical information derived from well tests include permeability,
distance to boundaries and faults, size and shape of sand bodies, near
wellbore damage or stimulation (Skin), and length of induced frac-
tures. An example of a well test interpretation procedure (Horner
analysis, see page 40) used to estimate the permeability of the for-
mation is shown in Fig. 1.2.

Figure 1.2: Horner analysis, an exam-
ple of well test interpretation: The
bottom hole pressure record from
build-up is plotted and used for esti-
mating permeability and skin.
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Figure 1.3: The cable connections from
two down-hole gauges coming out of
the Christmas tree.

Figure 1.4: A schematic of the place-
ment of down hole pressure gauge and
flow gauge.

1.1 Measuring pressure and rates

For well testing it is the pressure and the production rate (equiva-
lently, injection rate) that are the most important measured quanti-
ties. The pressure measured at the bottom of the well is referred to
as the bottom-hole pressure (BHP). This is the preferred pressuremea-
surement, as it is closest to the formation. Using the wellhead pres-
sure involves back-calculating the BHP based on a well flow model,
and this typically introduces too much uncertainty to be reliable for
well test analysis.

In modern wells, the pressure sensor is typically connected to the
surface by cable. This enables continuous (∼every second) surface
readout of the BHP. When several reservoir zones are produced at dif-
ferent bottom hole pressures, it is common to have a pressure trans-
ducer in each zone. It is also common with pressure sensors both in-
side the tubing and in the annulus.

The pressure sensor is normally placed at the top of the perforated
zone, thus a hydrostatic correction is required to obtain the reservoir
pressure at different heights in the reservoir (e.g. the depth at the
middle of the perforation). Transient pressure tests utilize the rel-
ative change in pressure, thus a constant correction factor will not
influence the well test analysis. However, if the fluids between the
pressure sensor and the height of interest is changing, this will influ-
ence the hydrostatic correction. As an example, consider a gas-liquid
interface slowly moving up the tubing. This could severely influence
the pressure readings, and thereby the well test analysis.

Earlier pressure gauges includedmechanical gauges (based on chan-
ges in strain of ametal due to pressure changes, e.g. a Bourdon gauge)
and strain gauges (based on the change in resistance of an conductor
due to pressure changes). While mechanical gauges might be pre-
ferred for extreme well conditions, present-day pressure gauges are
mostly quartz gauges. A quartz gauge employs that the resonant fre-
quency of a quartz crystal changes with pressure. As the resonant
frequency is sensitive to temperature in addition to pressure, it is
common to run two quartz pressure gauges in parallel. Only one of
them is exposed to the surrounding pressure, while both are exposed
to the temperature. The temperature is measured by the gauge solely
exposed to temperature, and this temperature is used to correct the
pressure reading from the gauge exposed to pressure.

The flow rate is controlled either at surface or down-hole. For sur-
face control it is important to distinguish the flow rates observed at
the surface from the flow rates experienced by the reservoir down-
hole. Typical flow gauges are turbines, Coriolis meters and multi-
phase flow meters applying gamma ray attenuation at different en-
ergy levels. In general, rate measurements has much lower quality
than pressure measurements.
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Drawdown test

Buildup test

Injection test

Falloff test

1.2 Types of tests

The main classes of well tests are drawdown test, buildup test, and
interference test. In addition we have injection tests and falloff tests,
which are the equivalents of drawdownand buildup tests for injectors.
The Dill Stem Test (DST), is a special drawdown test that is often per-
formed in exploration wells and newly drilled wells.

In a drawdown test, a static, stable and shut-in well is opened to
flow. For traditional analysis, the flow rate should be constant. Typ-
ical objectives for a drawdown test are to obtain an average perme-
ability (𝑘) of the drainage area, to estimate the skin (𝑆), to obtain pore
volume of the reservoir, and to detect reservoir heterogeneity.

During a buildup test, a well which is already flowing (ideally con-
stant rate) is shut in, and the downhole pressure is measured as the
pressure builds up. The objectives includes obtaining average per-
meability 𝑘 and skin 𝑆, as with the drawdown test. In addition, the
buildup test is conducted to obtain initial reservoir pressure during
the transient state (𝑝𝑖), and to obtain the average reservoir pressure
(𝑝) over the drainage area during pseudo-steady state.

In an injection test, a static, stable and shut-in well is opened to
(water-)injection. Thus, an injection test is conceptually similar to a
drawdown test, except flow is into the well rather than out of it. In
most cases the objectives of the injection test is the same as those of
a production test (e.g. 𝑘,𝑆), but the test can also be used to map the
injected water.

For a pressure falloff test, a well already injection (ideally at at a
constant rate) is shut in, and the pressure drop during the falloff pe-
riod is measured as the pressure declines. Thus, the pressure falloff
test is similar to the pressure buildup test. A pressure falloff test is
usually proceeded by an injectivity test of a long duration.

1.2.1 Obtained properties and time

Due to the transient nature of a pressure front moving through the
reservoir, the different classes of obtained reservoir properties are in-
trinsically linked to the time after the change in well rates. The differ-
ent reservoir properties are organized according to time in Table 1.1.

Early time Middle time Late time

Near wellbore Reservoir Reservoir boundaries

Skin Permeability Reservoir volume

Wellbore storage Heterogeneity Faults

Fractures Dual porosity (sealing/non-sealing)

Dual permeability Boundary pressure

Table 1.1: Time of measurement versus
type of measurements
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Interference test

Drill stem test

1 Mark Bentley Philip Ringrose.
Reservoir Model Design. A Practi-
tioner’s Guide. Springer, 2015. DOI :
10.1007/978-94-007-5497-3.
Model elements are three-dimensional
rock bodies which are petrophysically
and/or geometrically distinct from
each other in the specific context of the
reservoir fluid system.

1.2.2 Other well tests

In an interference test, one well is produced (rate change) and pres-
sure (response) is observed in a different well. The main objective
of an interference test is to investigate reservoir communication and
continuity, including communication over faults and barriers.

The specialised drill stem test (DST) is commonly used to test a
newly drilled well. The well is opened to flow by a valve at the base
of the test tool, and reservoir fluid flows up the drill string. Analysis
of the DST requires special techniques, since the flow rate is not con-
stant as the fluid rises in the drill string. This is a severe example of a
wellbore storage effect (see page 36).

1.3 Homogeneity and scales

All reservoir modelling assumes that the sub surface can be described
in terms of model elements.1 Each element have homogenous (con-
stant) or slowly varying properties, a characteristic size and shape,
and a corresponding length scale, or representative elementary vol-
ume (REV), over whitch property variations are averaged. Well test-
ing provides data for determining the properties of these model el-
ements. The relation between reservoir characterisatin and geologi-
cal reservoir modelling is discussed in the corresponding chapter on
pages 145–149.

In general each measurement type probes a certain reservoir vol-
ume, and is associatedwith a correspondingmeasurement scale. Some
measurement types and their corresponding scales (depth of investi-
gation) are shown in Table 1.2. The investigation scales may or may

Measurement type Approximate length scale (m)

Core 0.1

Well log 0.5

DST/RFT 1–10

Well test 0.1–500

Production data 100–1000

Table 1.2: Some measurement types
and their corresponding measurement
length scales

not correspond to geological modeling scales, that is representative
elementary volumes of model elements. In contrast to most other
methods, a well test does not probe properties at a fixed length scale:
The early time part of the test probe small scale properties near the
well, and later part of the test probe larger scale properties further
away from the well. Note also that, apart from the production data
itself, well testing is the only mesurement type that supply data on
the scales that are directly relevant for reservoir simulation.

https://doi.org/10.1007/978-94-007-5497-3
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2 An inverse problem starts with the
results and then calculates the causes.
A well-posed problem has an unique
solution that changes continuously
with the initial conditions.

1.4 Inverse problem

It should be noted that well test interpretation in isolation is actually
an ill-posed inverse problem 2. Well testing tries to describe an un-
known system by matching parameters in a model to measurement.
The model parameters hopefully correspond to a reality in the sub-
surface, but the solution is generally non-unique both in terms of
model andmodel parameters. Severe simplifications/assumptions are
often made to obtain a unique solution, and a requirement for any
useful well test analysis is that it is consistent with realistic geologi-
cal concepts for the reservoir at hand.



1 For a general introduction to the
mathematical notation, see the math-
ematical notes at page 149. The nabla
symbol ∇ represents the del operator
∇ = ( 𝜕

𝜕𝑥
, 𝜕
𝜕𝑦
, 𝜕
𝜕𝑧
). The Gauss theorem,

which is used in the derivation of the
continuity equation (2.1) is discussed
on page 150.

2 Volumetric flux has the dimension
of a velocity, and is often called Darcy
velocity. Note that the Darcy velocity
is always lower than the (interstitial)
velocity of the fluid flowing through
the pores.

2
Basic theory

In this chapter we will derive the linear hydraulic diffusivity equa-
tion, which is the fundamental equation in well test analysis. There
are a number of important approximations and assumptions involved
when deriving this equation. These assumptions includes that flow is
isothermal and single phase, permeability is isotropic and indepen-
dent of pressure, the fluid viscosity and compressibility is pressure
independent, the fluid compressibility is low, and that thewell is com-
pleted across the full formation thickness.

2.1 The diffusivity equation

The starting point for deriving the diffusivity equation is is the con-
tinuity equation for single phase flow which is an expression of con-
servation of mass in a volume element: 1

”mass in” − ”mass out” = ”change in mass”

−∇ ⋅ (𝜌𝑞) = 𝜕
𝜕𝑡 (𝜙𝜌) . (2.1)

Here 𝜌 is the fluid density, 𝜙 is the porosity, and 𝑞 is the volumet-
ric fluid flux2. The volumetric flux is related to the gradient in pore
pressure via Darcys law:

𝑞 = −𝑘𝜇∇𝑝 (2.2)

Inserting (2.2) into (2.1), and assuming constant permeability, 𝑘, and
pressure independent viscosity, 𝜇, we get

𝑘
𝜇∇ ⋅ (𝜌∇𝑝) = 𝜕

𝜕𝑡 (𝜙𝜌) . (2.3)

Wemay expand the derivatives of the product onboth sides of Eq. (2.3),
which gives:

𝑘
𝜇 (∇𝜌 ⋅ ∇𝑝 + 𝜌∇2𝑝) = 𝜌 𝜕𝜕𝑡𝜙 + 𝜙 𝜕𝜕𝑡𝜌 . (2.4)

We will first investigate the left hand side of Eq. (2.4): Compress-
ibility 𝑐 is a measure of the relative volume change as a response to a
pressure change:

𝑐 = − 1
𝑉
𝜕𝑉
𝜕𝑝 , (2.5)
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Liquid compressibility: 𝑐𝑙 =
1
𝜌
𝜕𝜌
𝜕𝑝

.

Low compressibility limit: 𝑐𝑙 → 0

Formation compressibility: 𝑐𝜙 =
1
𝜙
𝜕𝜙
𝜕𝑝

3 It is left to the reader to show, assum-
ing that the sand grains themselves
are incompressible, that the formation
compressibility as defined here is also
equal to the compressibility of a porous
rock sample with total volume 𝑉 sub-
ject to an increased pore pressure:
𝑐𝜙 =

1
𝑉

𝜕𝑉
𝜕𝑝

.

Total compressibility: 𝑐𝑡 = 𝑐𝑙 + 𝑐𝜙

Hydraulic diffusivity

The (hydraulic) diffusivity equation

where 𝑉 is the volume, and the liquid compressibility may be used to
convert derivatives of density into derivatives of pressure. For a liquid
the density 𝜌 = 𝑚/𝑉𝑙 is the fraction of mass 𝑚 divided by the volume
of the liquid 𝑉𝑙. Rewriting, we also have 𝑉𝑙 = 𝑚/𝜌. We can then derive
the liquid compressibility 𝑐𝑙 as:

𝑐𝑙 = − 1
𝑉𝑙
𝜕𝑉𝑙
𝜕𝑝 = − 𝜌

𝑚
𝜕𝑚/𝜌
𝜕𝜌

𝜕𝜌
𝜕𝑝 = −𝜌−1𝜌2

𝜕𝜌
𝜕𝑝 = 1

𝜌
𝜕𝜌
𝜕𝑝 . (2.6)

Thus, we see that the first term on the left hand side of Eq. (2.4) is

∇𝜌 ⋅ ∇𝑝 = 𝜕𝜌
𝜕𝑝∇𝑝 ⋅ ∇𝑝 = 𝜌𝑐𝑙|∇𝑝|2 ∝ 𝑐𝑙 , (2.7)

and since this term is proportional to the compressibility it may be
ignored in the low compressibility limit. The left hand side of Eq. (2.4)
is then simply

𝜌𝑘𝜇∇
2𝑝 . (2.8)

The right hand side of Eq. (2.4) can be expressed in terms of the
time derivative of pressure by applying the chain rule,

𝜌 𝜕𝜕𝑡𝜙 + 𝜙 𝜕𝜕𝑡𝜌 = 𝜌𝜕𝜙𝜕𝑝
𝜕
𝜕𝑡𝑝 + 𝜙𝜕𝜌𝜕𝑝

𝜕
𝜕𝑡𝑝

= 𝜌𝜙 ( 1𝜙
𝜕𝜙
𝜕𝑝 + 1

𝜌
𝜕𝜌
𝜕𝑝)

𝜕
𝜕𝑡𝑝

. (2.9)

The formation compressibility, 𝑐𝜙, is defined3 as

𝑐𝜙 =
1
𝜙
𝜕𝜙
𝜕𝑝 , (2.10)

and
𝑐𝑡 = 𝑐𝑙 + 𝑐𝜙 . (2.11)

is called total compressibility, so Eq. (2.9) is simply

𝜌 𝜕𝜕𝑡𝜙 + 𝜙 𝜕𝜕𝑡𝜌 = 𝜌𝜙𝑐𝑡
𝜕
𝜕𝑡𝑝 . (2.12)

Equating left (2.8) and right hand side (2.12), and dividing by 𝜌𝜙𝑐𝑡
we get

𝑘
𝜇𝜙𝑐𝑡

∇2𝑝 = 𝜕
𝜕𝑡𝑝 . (2.13)

This is the (hydraulic) diffusivity equation which is the fundamental
equation in well testing, and the quantity

𝜂 = 𝑘
𝜇𝜙𝑐𝑡

(2.14)

is called the (hydraulic) diffusivity. The unit for hydraulic diffusivity
𝜂 is

[𝜂] = [𝑘]
[𝜇][𝜙][𝑐𝑡]

= 𝑚2

(𝑃𝑎 ⋅ 𝑠)(𝑃𝑎−1) =
𝑚2

𝑠 , (2.15)

where we use that porosity 𝜙 is dimensionless. Using the 𝜂 notation
for the diffusivity, we get the following simplified diffusivity equa-
tion:

𝜂∇2𝑝 = 𝜕
𝜕𝑡𝑝 . (2.16)
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4 The oil permeability at irreducible
water saturation 𝑆𝑤𝑖 is typically very
close to the absolute permeability,
𝑘𝑜 ≃ 𝑘, and can thus be interchanged.

The diffusivity 𝜂 determines how fast pressure signals move through
the reservoir, but it is important to note that the signal moves in a
diffusion process, where the actual speed decreases as it spreads. This
is very different from a seismic pressure wave whichmove at constant
velocity.

By investigating the different elements of the diffusivity 𝜂 in Eq. (2.14),
we observe that a pressure disturbance moves faster in a high perme-
able reservoir than in a low permeable reservoir. On the other hand,
increased porosity, viscosity or compressibility reduces the speed of
the pressure signal.

2.1.1 Diffusivity equation in oil reservoirs

The diffusivity equation (2.13) was derived under the following as-
sumptions:

• Isothermal flow

• A single fluid phase

• Constant isotropic permeability

• Fluid viscosity independent of pressure

• Compressibility independent of pressure

• Low fluid compressibility

As derived, the equation is thus only valid for reservoirs that contain a
single low-compressible fluid phase, that is forwater reservoirs. How-
ever, the validity of the equation may be extended to oil reservoirs at
irreducible water saturation, 𝑆𝑤𝑖. The irreducible water does not flow,
but it influences the total compressibility, so the diffusivity equation
is valid for oil reservoirs at 𝑆𝑤𝑖 provided the following:

• Permeability, 𝑘, is replaced by oil permeability4, 𝑘𝑜 = 𝑘𝑟𝑜(𝑆𝑤𝑖)𝑘.

• Viscosity, 𝜇, is the oil viscosity, 𝜇𝑜

• Total compressibility is defined as:
𝑐𝑡 = 𝑐𝜙 + 𝑆𝑜𝑐𝑜 + 𝑆𝑤𝑐𝑤

In this case the equation takes the form

𝑘𝑜
𝜇𝑜𝜙𝑐𝑡

∇2𝑝 = 𝜕
𝜕𝑡𝑝 (2.17)

Gas reservoirs, which may contain a highly compressible fluid, and
reservoirs with several flowing fluids, can not be analyzed based on
the simple hydraulic diffusivity equation. Well test analysis in these
reservoirswill be discussed in separate chapters (see page 109 and117)
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Figure 2.1: Vertical fully penetrat-
ing well in a reservoir of constant
thickness

The radial diffusivity equation. That is
the diffusivity equation for a vertical
fully penetrating well in cylinder
coordinates

2.2 Vertical fully penetrating well – Radial flow

Wewill consider a vertical fully penetrating well in a reservoir of con-
stant thickness, as illustrated in Fig. 2.1. In this case it is natural to
use cylinder coordinates.

The general form of the Laplace operator on the pressure field∇2𝑝
in cylinder coordinates is

∇2𝑝 = [1𝑟
𝜕
𝜕𝑟 (𝑟

𝜕
𝜕𝑟) +

1
𝑟2

𝜕2
𝜕𝜃2 +

𝜕2
𝜕𝑧2 ] 𝑝 , (2.18)

where 𝑟 is the radius, 𝜃 is the angle, and 𝑧 is the height. For a fully
penetrating well in an isotropic medium flow is independent of an-
gle and height so that we have 𝜕𝑝

𝜕𝜃
= 0 and 𝜕𝑝

𝜕𝑧
= 0. The diffusivity

equation (2.16) is then

𝜂1𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑝
𝜕𝑟 ) =

𝜕𝑝
𝜕𝑡 . (2.19)

Alternatively, it is illustrative to derive the radial diffusivity equa-
tion (2.19) starting from the radial formof the continuity equation (2.1):

− 𝜕
𝜕𝑟 (𝐴𝜌𝑞) =

𝜕
𝜕𝑡 (𝐴𝜌𝜙) , (2.20)

where 𝐴 = 2𝜋𝑟ℎ is the cylinder area. Employing Darcy’s law (2.2), we
obtain

𝜕
𝜕𝑟 (2𝜋𝑟ℎ𝜌

𝑘
𝜇
𝜕𝑝
𝜕𝑟 ) =

𝜕
𝜕𝑡 (2𝜋𝑟ℎ𝜌𝜙) (2.21)

𝑘
𝑟𝜇

𝜕
𝜕𝑟 (𝑟𝜌

𝜕𝑝
𝜕𝑟 ) =

𝜕
𝜕𝑡 (𝜌𝜙) , (2.22)

where we have used that 𝑘, 𝜇, and ℎ are constants. From Eq. (2.12) we
have

𝜕
𝜕𝑡 (𝜌𝜙) = 𝜌𝜙𝑐𝑡

𝜕𝑝
𝜕𝑡 . (2.23)

For the left hand side we obtain

𝜕
𝜕𝑟 (𝑟𝜌

𝜕𝑝
𝜕𝑟 ) = 𝜌 𝜕𝜕𝑟 (𝑟

𝜕𝑝
𝜕𝑟 ) + 𝑟𝜕𝑝𝜕𝑟

𝜕𝜌
𝜕𝑟 = 𝜌 𝜕𝜕𝑟 (𝑟

𝜕𝑝
𝜕𝑟 ) + 𝑟𝜕𝑝𝜕𝑟

𝜕𝜌
𝜕𝑝

𝜕𝑝
𝜕𝑟 (2.24)

= 𝜌 𝜕𝜕𝑟 (𝑟
𝜕𝑝
𝜕𝑟 ) + 𝑟 (𝜕𝑝𝜕𝑟 )

2
𝑐𝑙𝜌 ≃ 𝜌 𝜕𝜕𝑟 (𝑟

𝜕𝑝
𝜕𝑟 ) . (2.25)
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Transient flow

Semi steady state flow

5 In some contexts the term pseudo
steady state is used for semi steady
state flow.

Steady state flow

Here we used Eq. (2.6) for the third equality, and applied the low com-
pressibility limit (small liquid compressibility 𝑐𝑙) for the last similar-
ity. Combining these results, we get the equation for radial flow:

𝜂1𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑝
𝜕𝑟 ) =

𝜕𝑝
𝜕𝑡 . (2.26)

2.2.1 Flow regimes

At different times in a well test the solution of the diffusivity will be
in one of three possible stages of flow regimes:

Initially we have a general unsteady state, or transient, flow situa-
tion where pressure change differently with time dependent on posi-
tion: 𝜕

𝜕𝑡𝑝(𝑟, 𝑡) = 𝑓(𝑟, 𝑡) (2.27)

Analysis of the transient flow period is the main concern of well test-
ing.

Very late in the test the reservoir reaches a semi steady state where
the pressure profile is constant and pressure changes at the same rate
everywhere5:

𝜕
𝜕𝑡𝑝(𝑟, 𝑡) = 𝐶 (2.28)

Analysis of the time to reach semi steady state and the rate of pres-
sure change in this period give information about the reservoir shape,
area, and volume.

In the case that the reservoir pressure is supported by a strong
aquifer, or by pressure maintenance operations (water or gas injec-
tion), pseudo steady state is replaced by true steady state flow:

𝜕
𝜕𝑡𝑝(𝑟, 𝑡) = 0 . (2.29)

2.3 Steady state solution

Wewill first investigate the steady state solution of radial flow (2.19).
Except for early times in a well test, this solution describes the pres-
sure profile around a vertical fully penetratingwell. Steady statemeans
that the right hand side of is zero, so the steady state pressure profile
can be found by solving

𝜕
𝜕𝑟 (𝑟

𝜕
𝜕𝑟𝑝) = 0 . (2.30)

We may integrate Eq. (2.30) and get

𝜕
𝜕𝑟𝑝 = 𝐶1

1
𝑟 , (2.31)

where 𝐶1 is an integration constant. Furthermore, using integration
by substitution to integrate both sides from the well radius 𝑟𝑤 to 𝑟, we
get

𝑝 − 𝑝𝑤 = 𝐶1 ln(
𝑟
𝑟𝑤
) . (2.32)

where 𝑝𝑤 is the well pressure.
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6 In well testing literature it is most
common to derive equations in terms
of surface rates. In the present text all
equations are derived using down hole
(reservoir) rates. The apparent only
difference between the two approaches
is that𝑄 here is replaced by𝑄𝑠𝐵,
where 𝐵 is the formation volume factor
and𝑄𝑠 is the surface well production
rate, in those other texts. However,
representing the relation between
a reservoir rate and a surface rate,
which involves for instance equipment
such as test separators, in general by
a simple constant factor 𝐵 underplays
the non-triviality of the conversion.

The integration constant is determined
by production rate via Darcys law
General steady state solution for radial
flow

Characteristic pressure scale

Skin is typically caused by formation
damage.

Darcys law tells us that the volumetric flux is proportional to the
pressure gradient:

𝑞 = −𝑘𝜇∇𝑝 . (2.33)

The volumetric fluid flux, 𝑞, is defined as volumetric rate per area, so
given the total down hole (reservoir) well production rate 6, 𝑄, we have

𝑞 = 𝑄
2𝜋𝑟ℎ , (2.34)

where ℎ is the perforation height (which in our case equals the height
of the reservoir). The integration constant is determined by inserting
the flux from Eq. (2.34) and the pressure derivative, ∇𝑝 = 1

𝑟
𝐶1, from

Eq. (2.31) into Darcys law (2.33):

𝐶1 =
𝑄𝜇
2𝜋𝑘ℎ , (2.35)

which when inserted into Eq. (2.32) gives the general steady state
solution for radial flow:

𝑝 = 𝑝𝑤 + 𝑄𝜇
2𝜋𝑘ℎ ln( 𝑟𝑟𝑤

) . (2.36)

Wewill nowdiscuss someof the characteristics of the solution (2.36).
The pressure profile has the form of a logarithmic singularity at the

well location, and the pressure changes increasingly fast close to the
well and very slowly at larger distances. This means that most of the
pressure drop from the reservoir into the well is located in the near
well region, and any changes in the permeability in this region will
have a significant influence on well productivity. In general, the dif-
ference in pressure (pressure drop) from 𝑟1 to 𝑟2 is given by

𝑝(𝑟1) − 𝑝(𝑟2) =
𝑄𝜇
2𝜋𝑘ℎ ln(𝑟1𝑟2

) , (2.37)

and we see that the pressure profile, 𝑝(𝑟) − 𝑝𝑤 is proportional to a
characteristic pressure scale 𝑝𝑐:

𝑝𝑐 =
𝑄𝜇
2𝜋𝑘ℎ . (2.38)

Note that 𝑝𝑐 is proportional to the rate and inversely proportional to
permeability.

2.3.1 Skin

The formation volume close to thewellbore typically has altered prop-
erties compared to the surrounding reservoir. Of highest importance
for well productivity is an altered permeability, and the effect of this
alteration on productivity is called skin.

Skin is typically caused by formation damage as a result of drilling
and production, but can also be the result of reduced mobility due
multiphase flow. Intentional improved permeability due towell treat-
ments and hydraulic fracturing also contribute to skin, but the pos-
itive results of these treatments result in a negative skin in contrast
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Figure 2.2: Pressure profile around a
well with skin. Actual pressure profile
in red, ideal profile without skin in
blue.

Skin factor, 𝑆.

Note: 𝑝𝑐 =
𝑄𝜇
2𝜋𝑘ℎ

to the normal positive skin due to formation damage. Flow restric-
tions in the wellbore itself including scale buildup, wax, and asphal-
tene deposits are not referred to as formation damage, but are quite
often included as part of the skin. Examples of factors that contribute
to skin are given below:

• Formation damage due to drilling

– Solids plugging from mud filtrate invasion

– Clay-particle swelling or dispersion

– Emulsion blockage

• Formation damage due to production

– Fines migration

– Deposition of paraffins or asphaltenes

– Deposition of scale minerals

• Reduced mobility due to phase behavior

– Condensate banking (Production below dewpoint)

– Free gas (Production below bubble point)

As shown in Fig. 2.2, the effect of the skin is an additional pressure
drop compared to a well without skin. The effect can be described
quantitatively by the dimensionless skin factor, 𝑆

𝛥𝑝𝑠 =
𝑄𝜇
2𝜋𝑘ℎ𝑆 = 𝑝𝑐𝑆 , (2.39)

and adding the extra pressure drop to the steady state solution (2.36)
gives

𝑝 = 𝑝𝑤 + 𝑝𝑐 [ln(
𝑟
𝑟𝑤
) + 𝑆] . (2.40)

Typically skin factors 𝑆 > 5 are considered bad and factors 𝑆 < −3.5
are viewed as excellent.

The effect of skin can alternatively be described in terms of the
equivalent (or effective) wellbore radius, 𝑟𝑤𝑒. The concept is illus-
trated in Fig. 2.3: The additional pressure drop due to skin can be
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Figure 2.3: The concept of effective
wellbore radius: The red curve shows
the pressure profile with a positive skin
(formation damage), corresponding
to a reduced effective wellbore radius.
The green curve shows the pressure
profile with negative skin, correspond-
ing to an increased effective radius.
The radius is scaled by the well radius
𝑟𝑤.

Effective wellbore radius, 𝑟𝑤𝑒.

7 The pressure difference (𝑝𝑟 − 𝑝𝑤)
is the driving force, and is called
drawdown. Note that the definition
of the productivity index vary in the
literature, and some text alternatively
define PI based on the pressure at the
outer boundary or the reservoir.

Equivalent radius

expressed in terms of the effective wellbore radius by noting that the
ideal pressure profile is

𝑝ideal(𝑟) = 𝑝𝑤 + 𝛥𝑝𝑠 + 𝑝𝑐 ln(
𝑟
𝑟𝑤
) , (2.41)

and that by definition we have

𝑝ideal(𝑟𝑤𝑒) = 𝑝𝑤 . (2.42)

The extra pressure drop due to skin is then found by combining equa-
tions (2.41) and (2.42):

𝛥𝑝𝑠 = 𝑝𝑐 ln(
𝑟𝑤
𝑟𝑤𝑒

) (2.43)

By comparing equations (2.39) and (2.43) we see that the equiva-
lent wellbore radius can be expressed in terms of the skin factor:

𝑟𝑤𝑒 = 𝑟𝑤𝑒−𝑆 . (2.44)

2.3.2 Productivity index

The productivity index, PI, is a measure of well productivity, and is
conceptually defined through 7

𝑄𝑠 = PI ⋅ (𝑝𝑟 − 𝑝𝑤) , (2.45)

where 𝑄𝑠 is the surface production rate, and 𝑝𝑟 is the reservoir pres-
sure. Since the the pressure is not constant throughout the reservoir,
Eq. (2.45) does not uniquely define 𝑃𝐼 as it depends on how and where
the reservoir pressure is defined. For steady state, and semi steady
state flow, the productivity indexwill be constant if the reservoir pres-
sure is identified as the average reservoir pressure, so a natural choice
is

𝑝𝑟 = 𝑝 = 1
𝑉 ∫𝑝(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧 , (2.46)

where 𝑉 is the reservoir volume
Wedefine the equivalent radius, 𝑟𝑒, as the radiuswhere the reservoir
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Get average pressure by integrating the
pressure profile.

pressure equals the average reservoir pressure, 𝑝(𝑟𝑒) = 𝑝. Inserting
this into Eq. (2.40), and solving for the production rate gives

𝑄 = 2𝜋𝑘ℎ
𝜇 (ln( 𝑟𝑒

𝑟𝑤
) + 𝑆)

(𝑝 − 𝑝𝑤) . (2.47)

Thus, production is proportional to the difference between reservoir
pressure and well pressure, and introducing the formation volume
factor

𝐵 = 𝑄/𝑄𝑠 (2.48)

we have

PI = 2𝜋𝑘ℎ
𝜇𝐵

1
ln( 𝑟𝑒

𝑟𝑤
) + 𝑆

. (2.49)

As would be expected, we see that long wells, with a large radius and
small skin, in a high permeability formation, have high productivity.

For transient non-steady state flow, the equivalent radius increase
with time, corresponding to a decline in productivity, while for steady
and semi steady state flow 𝑟𝑒, and consequently 𝑃𝐼, is constant. To get
a measure for how 𝑟𝑒 depend on reservoir size, we will investigate the
semi steady state solution for a finite circular reservoir with an outer
radius 𝑟𝑜. This will also allow us to quantify the relative importance
of skin on productivity.

The average reservoir pressure 𝑝 is given by the integral

𝑝 = 1
𝜋𝑟2𝑜

∫
𝑟𝑜

𝑟𝑤
2𝜋𝑟𝑝(𝑟) 𝑑𝑟 = 𝑝𝑤 + 𝑝𝑐𝑆 +

2𝑝𝑐
𝑟2𝑜

∫
𝑟𝑜

𝑟𝑤
𝑟 ln ( 𝑟𝑟𝑤

) 𝑑𝑟 , (2.50)

that is
𝑝 = 𝑝𝑤 + 𝑝𝑐 (ln (

𝑟𝑜
𝑟𝑤
) − 1

2 + 𝑆) , (2.51)

where we have ignored the small terms proportional to ( 𝑟𝑤
𝑟𝑜
)
2
that

originate from the lower integration limit. Comparing equations (2.51)
and (2.40) we see that

ln ( 𝑟𝑒𝑟𝑤
) = ln ( 𝑟𝑜𝑟𝑤

) − 1
2 , (2.52)

or
𝑟𝑒 = 𝑒−

1
2 𝑟𝑜 ≈ 0.6𝑟𝑜 . (2.53)

We can insert (2.52) into (2.49) to get

PI = 2𝜋𝑘ℎ
𝜇𝐵

1
ln ( 𝑟𝑜

𝑟𝑤
) − 1

2
+ 𝑆

, (2.54)

and we see that wemay ignore the effect of skin on productivity when

|𝑆| ≪ ln ( 𝑟𝑜𝑟𝑤
) − 1

2 . (2.55)

As an example; if we have 𝑟𝑜 = 500m and 𝑟𝑤 = 0.1m, we get

ln ( 𝑟𝑜𝑟𝑤
) − 1

2 ≈ 8 ,

which can also be compared to the criterion for bad skin (𝑆 > 5) men-
tioned on page 21.





Figure 3.1: The ideal drawdown sched-
ule.

Note: 𝜂 = 𝑘
𝜇𝜙𝑐𝑡

(hydraulic diffusivity).

3
Drawdown test

In a drawdown test a non-producing well is opened for production
at an ideally constant rate, and the flowing bottom hole pressure is
recorded. An ideal drawdown rate schedule, with corresponding pres-
sure response, is shown in Fig. 3.1.

In this chapter, a special case of the solution to the diffusivity equa-
tion will be derived. This solution, known as the infinitely acting line
source fundamental solution, is directly relevant for analyzing a draw-
down test, and the inspection of this solution gives important insight
into how pressure signalsmove in the reservoir. Further, we will show
how a drawdown test can be used to derive reservoir and well proper-
ties such as permeability and skin factor.

3.1 Transient solution for drawdown test

In this section we will derive a solution to the transient behavior of
a drawdown test in an infinite reservoir. Since this solution is not
influenced by any boundaries it is called an infinite acting solution.
In the derivation we will treat the well as a line source, i.e. we will
ignore any effects due to the finite well radius. The infinite acting
line-source solution is the most fundamental solution in well testing.
and the analysis of the spatial and temporal behavior of this solution
gives valuable insights. The line source solution is accurate for dis-
tances far away from the well at all times, but is not accurate for the
well pressure at short times. At the end of this subsection we will
compare well pressures from the approximate solution to the exact
finite wellbore solution to establish its range of validity.

The diffusivity equation in cylinder coordinateswas givenbyEq. (2.19).
Using the product rule for differentiation, we can write out Eq. (2.19)
as

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑝
𝜕𝑟 ) =

1
𝑟
𝜕
𝜕𝑟𝑝 +

𝜕2
𝜕𝑟2𝑝 =

1
𝜂
𝜕
𝜕𝑡𝑝 , (3.1)

and rearranging the terms, this gives the following equation:

[1𝑟
𝜕
𝜕𝑟 +

𝜕2
𝜕𝑟2 −

1
𝜂
𝜕
𝜕𝑡 ] 𝑝 = 0 . (3.2)

We are searching the transient solution for a constant rate drawdown
test in an infinite reservoir. This solution will also be valid for the
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The source at the well is approximated
by a line source.

early times of a test in a finite reservoir, i.e. for times shorter than
the time needed for the pressure signal to travel to the outer (near-
est) boundary. Wewill assume a line source, whichmeans that wewill
take the inner constant flow boundary condition at 𝑟 = 0 and not at
𝑟𝑤. This is equivalent to the correct boundary condition as long as we
consider large distances. Since a semi steady state pressure profile is
established in the near well area after a relatively short time, the line
source solution will also be valid for times larger than a character-
istic time, and the skin effect will amount to an additional constant
pressure drop, 𝛥𝑝𝑠, except for short times.

In order to derive the solution we will assume that it has a special
form and then proceed to show that this form satisfies the differential
equation and the boundary conditions. The assumption is that the
solution is on the form

𝑝(𝑟, 𝑡) = 𝑝( 𝑟
2

4𝜂𝑡) = 𝑝(𝜉) . (3.3)

As the hydraulic diffusivity 𝜂 has unit m2/s, we see that 𝜉 is a dimen-
sionless variable. We will now perform a change of variable from 𝑟
and 𝑡 to 𝜉 = 𝑟2/(4𝜂𝑡) in the diffusivity equation (3.2). Observing that

𝜕𝜉
𝜕𝑟 =

𝜕
𝜕𝑟 (

𝑟2
4𝜂𝑡) =

2𝑟
4𝜂𝑡 = 2𝜉

𝑟
𝜕2𝜉
𝜕𝑟2 = 𝜕2

𝜕𝑟2 (
𝑟2
4𝜂𝑡) =

2
4𝜂𝑡 = 2𝜉

𝑟2
𝜕𝜉
𝜕𝑡 =

𝜕
𝜕𝑡 (

𝑟2
4𝜂𝑡) = − 𝑟2

4𝜂𝑡2 = −𝜉𝑡

, (3.4)

we get the following equalities:

1
𝑟
𝜕
𝜕𝑟 =

1
𝑟
𝜕𝜉
𝜕𝑟

𝜕
𝜕𝜉 = 2𝜉

𝑟2
𝜕
𝜕𝜉

𝜕2
𝜕𝑟2 =

𝜕2𝜉
𝜕𝑟2

𝜕
𝜕𝜉 + (𝜕𝜉𝜕𝑟 )

2 𝜕2
𝜕𝜉2 = 2𝜉

𝑟2
𝜕
𝜕𝜉 + (2𝜉𝑟 )

2 𝜕2
𝜕𝜉2

−1𝜂
𝜕
𝜕𝑡 = −1𝜂

𝜕𝜉
𝜕𝑡

𝜕
𝜕𝜉 = 𝜉

𝑡𝜂
𝜕
𝜕𝜉 = 4𝜉2

𝑟2
𝜕
𝜕𝜉

. (3.5)

Collecting these terms, the diffusivity equation (3.2) has the form

[(4𝜉𝑟2 +
4𝜉2
𝑟2 )

𝜕
𝜕𝜉 +

4𝜉2
𝑟2

𝜕2
𝜕𝜉2 ] 𝑝 = 0 , (3.6)

which can be simplified to

[(1 + 𝜉) 𝜕𝜕𝜉 + 𝜉 𝜕
2

𝜕𝜉2 ] 𝑝 = 0 . (3.7)

Since (3.7) is an equation of 𝜉 only, the assumed form 𝜉 = 𝑟2/(4𝜂𝑡) is
a possible solution.

Given this form of 𝜉, a boundary condition at 𝑟 = 0 (line source)
corresponds to an inner boundary condition at 𝜉 = 0. We also have a
specified initial pressure in the whole reservoir and a constant pres-
sure at infinity,

𝑝(𝑟, 0) = 𝑝(∞, 𝑡) = 𝑝𝑖 , (3.8)
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1 The exponential integral E1(𝑥)
is available as expint in Matlab,
scipy.special.exp1(x) in Python,
and Ei(1,x) in Maple.
Note that traditionally the function

Ei(𝜉) = −∫∞
−𝜉

𝑒−𝑡
𝑡 𝑑𝑡

is used in well testing literature. Using
this function we have

𝑋(𝜉) = −Ei(−𝜉) ,

which gives gives a rather awkward
notation. The two functions give
identical results for positive real values
of 𝜉, so tabulated values for −Ei(−𝜉)
found in the literature may be used for
E1(𝜉).

0 1 2 3 4 5
𝜉

10−3

10−2

10−1

100
𝐸1(𝜉)

Figure 3.2: The exponential integral

where the constant pressure at infinity corresponds to anouter bound-
ary condition at 𝜉 = ∞.

It can be shown, by back substitution, that the solution to Eq. (3.7)
has the form

𝑝(𝜉) = 𝐴 + 𝐵𝑋(𝜉) , (3.9)

where 𝑋(𝜉) is a function that satisfy the condition

𝜕𝑋
𝜕𝜉 = −𝑒

−𝜉

𝜉 , (3.10)

and 𝐴 and 𝐵 are constants to be determined by the boundary condi-
tions. The function

𝑋(𝜉) = E1(𝜉) = ∫
∞

𝜉

𝑒−𝑡
𝑡 𝑑𝑡 (3.11)

is an exponential integral, which is tabulated and available as a spe-
cial function in math packages.1 Since

∫
∞

𝜉

𝑒−𝑡
𝑡 𝑑𝑡 = ∫

𝜉

∞
−𝑒

−𝑡

𝑡 𝑑𝑡 , (3.12)

we can apply the first fundamental theorem of calculus to obtain
Eq. (3.10).

The exponential integral function E1(𝜉) is plotted in Fig. 3.2. The
plot indicates that E1(∞) = 0, which we will use to determine the
constant 𝐴: Since 𝑋(∞) = E1(∞) = 0, the outer boundary condition
𝑝(∞) = 𝑝𝑖 implies

𝐴 = 𝑝𝑖 , (3.13)

so 𝑝(𝜉) = 𝑝𝑖 + 𝐵𝑋(𝜉). The inner boundary condition is used to deter-
mine the constant 𝐵. We first note that

𝜕𝑝
𝜕𝜉 = 𝜕

𝜕𝜉 (𝑝𝑖 + 𝐵𝑋(𝜉)) = 𝐵𝜕𝑋𝜕𝜉 = −𝐵𝑒
−𝜉

𝜉 . (3.14)

A constant total rate 𝑄 at 𝑟 = 0 then translates to a condition on the
pressure gradient via Darcys law:

𝑄
2𝜋𝑟ℎ = 𝑞 = 𝑘

𝜇
𝜕𝑝
𝜕𝑟

= 𝑘
𝜇
𝜕𝑝
𝜕𝜉

𝜕𝜉
𝜕𝑟

= −𝑘𝜇𝐵
𝑒−𝜉
𝜉
𝜕𝜉
𝜕𝑟

= −𝑘𝜇𝐵
2
𝑟 𝑒

−𝜉

(3.15)

In the last equality we invoke the first equality in Eq. (3.4). The inner
boundary condition is at 𝜉 = 0, so Eq. (3.15) gives

𝐵 = − 𝑄𝜇
4𝜋𝑘ℎ . (3.16)

Substituting the integration constants from Eqs. (3.13) and (3.16)
into Eq. (3.9) gives the final expression for the infinite acting line



28 LECTURE NOTES IN WELL -TESTING

Infinite acting line source solution.

SPE Metric SI

𝑘 0.1mD 9.869 × 10−14m2

ℎ 10m 10m
𝑄 100m3/d 1.16 × 10−3m3/s
𝑟𝑤 0.12m 0.12m
𝜇 1 cP 1 × 10−3 Pa s
𝜙 0.2 0.2
𝑐𝑡 1 × 10−4 bar−1 1 × 10−9 Pa−1

𝑝𝑖 200 bar 2 × 107 Pa

Table 3.1: Basic data for example.

10−3 10−2 10−1 100
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ln(1/𝜉) − 𝛾
𝐸1(𝜉)

Figure 3.4: A plot comparing the
exponential integral E1(𝜉) in blue and
ln (1/𝜉) − 𝛾 in green.

source solution for a constant rate drawdown test:

𝑝 = 𝑝𝑖 −
𝑄𝜇
4𝜋𝑘ℎ E1 (

𝜇𝜙𝑐𝑡
4𝑘

𝑟2
𝑡 ) . (3.17)

Using the 𝜂 notation for hydraulic diffusivity and 𝑝𝑐 for the charac-
teristic pressure, this equation simplifies to:

𝑝 = 𝑝𝑖 −
1
2𝑝𝑐 E1 (

1
4𝜂

𝑟2
𝑡 ) . (3.18)

After a small example, we will investigate some of the properties of
this solution.

3.2 Example

We will employ Eq. (3.17) using the reservoir data in Table 3.1. In
Fig. 3.3 we have plotted Eq. (3.17) after 1 to 4 days. As we see from the
left figure, the first days witness a large change in the pressure profile,
while the subsequent days yields subsequently smaller changes from
the previous day. We also observe that the pressure profile at a radius
of 1000m begins to significantly deviate from the initial pressure af-
ter approximately 4 days. Thus, if the distance from the well to the
nearest reservoir boundary is 1000m the infinite acting solution will
be invalid after 4 days.

In the right figure we have plotted the same graphs in a logarithmic
plot. This plot shows clearly that the change in the pressure profile
diminish with time. It also indicates that the pressure profile is close
to linearwhenplotted on a logarithmic scale. Thiswill be investigated
further in the next section.
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3.3 Logarithmic approximation

The exponential integral E1(𝜉) has a logarithmic singularity at 𝜉 = 0,
and for small 𝜉 it can be approximated by a logarithm:

E1(𝜉) ≈ ln (1𝜉 ) − 𝛾 , (3.19)

where 𝛾 = 0.5772… is the Euler(–Mascheroni) constant.
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The exponantial integral is replaced
by the logarithmic approximation for
small 𝜉 (large 𝑡 or small 𝑟)
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Figure 3.5: A plot comparing the
exponential integral E1(𝜉) in blue and
𝑒−𝜉/𝜉 in green.
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Figure 3.7: The exponential integral

A comparison between E1(𝜉) and ln (1/𝜉)−𝛾 is shown in Fig. 3.4. In
this plot, the functions are similar for values smaller than 10−2 = 0.01.
This indicates that the logarithmic approximation is fair for

1
4𝜂

𝑟2
𝑡 < 0.01 , (3.20)

thus the approximation is fair for small radii 𝑟 and late times 𝑡.
Employing the approximation given by Eq. (3.19) we obtain

𝑝(𝑟, 𝑡) = 𝑝𝑖 −
𝑝𝑐
2 (ln (4𝜂 𝑡𝑟2 ) − 𝛾) . (3.21)

By subtracting the pressure given by Eq. (3.21) at two different dis-
tances, 𝑟1 and 𝑟2 we see that

𝑝(𝑟1) − 𝑝(𝑟2) = 𝑝𝑐 ln (
𝑟1
𝑟2
) . (3.22)

independent of time. This is identical to the expression for steady
state (2.37), which means that a logarithmic semi steady state pres-
sure profile has developed around the well.

The exponential integral is exponentially small for large values of
𝜉, and we have the approximation:

E1(𝜉) ≈
𝑒−𝜉
𝜉 . (3.23)

Fig. 3.5 is a comparison between E1(𝜉) and 𝑒−𝜉/𝜉, and this plot shows
that the functions are similar for values larger than 10. As E1(𝜉) ≃ 0
for large values of 𝜉, the pressure is undisturbed (𝑝 = 𝑝𝑖) at large
distances or short times.

10−2 10−1 100 101 102
𝑟

−10
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−4

−2

0

𝛥𝑝

Semi-steady-state profile At initial pressure

Figure 3.6: Pressure profile at a fixed
time (blue line). A logarithmic semi
steady state pressure profile has de-
veloped around the well, and pressure
beyond a certain distance is essentially
unchanged. (In this figure 𝛥𝑝 is given
in units of 𝑄𝜇

4𝜋𝑘ℎ
, and 𝑟 is given in units

of√
𝜇𝜙𝑐𝑡
4𝑘𝑡

)

The pressure profile at a fixed time is illustrated in Fig. 3.6. For
small distances the pressure profile is matched by the logarithmic ap-
proximated given by Eq. (3.21). For large distances the pressure is
essentially unchanged and still at initial pressure.

The time–space dependency of the pressure is given by E1(𝜉),
shown in Fig. 3.7. We see that the pressure is essentially unchanged
(E1(𝜉) < 0.01) wherever 𝜉 > 3, which corresponds to a distance 𝑟 > 𝑟𝑝:

𝑟𝑝 = √12𝜂𝑡 . (3.24)
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Radius of investigation

The speed at which the pressure front is moving, 𝑣𝑝, is given by

𝑣𝑝 =
𝑑𝑟𝑝
𝑑𝑡 = √

3𝜂
𝑡 , (3.25)

The speed of the pressure front is diverging at early times, and is di-
minishing as the front moves away from the well. As mentioned ear-
lier the line source solution is not valid for early times close to the
wellbore, so the divergence at 𝑡 → 0 is unproblematic.

In addition to the location of the pressure front (Eq. (3.24)), we
are interested in the radius within which the pressure is significantly
influenced by the test. This radius is called radius of investigation,
𝑟inv, and is somewhat arbitrarily defined as the radius where 𝜉 = 1:

𝑟inv = √4𝜂𝑡 . (3.26)

Eq. (3.26) can be inverted in order to determine the time needed to
investigate reservoir features at a given distance from the well:

𝑡inv =
𝑟2inv
4𝜂 . (3.27)

3.3.1 Well pressure

The primary measurement in a well test is the bottom hole well pres-
sure. The line source solution is not valid at the well radius for short
times, but for late times we can get the well pressure by inserting the
well radius in Eq. (3.21). Additionally, the effect of skin must be ac-
counted for. Since a steady state pressure profile develops in the near
well area, the skin effect amounts to an additional constant pressure
drop 𝛥𝑝𝑠 except for very short times. From the steady state solu-
tion (2.39) we have

𝛥𝑝𝑠 = 𝑝𝑐𝑆 , (3.28)

which gives

𝑝𝑤(𝑡) = 𝑝𝑖 −
𝑝𝑐
2 (ln (4𝜂 𝑡

𝑟2𝑤
) − 𝛾 + 2𝑆) . (3.29)

3.4 Dimensionless analysis

Dimensionless variables simplify our equations by embodying well
and reservoir parameters that are assumed constant, e.g. well radius,
permeability, viscosity, porosity, compressibility, perforation height
etc. Using dimensionless variables then yields solutions that are in-
dependent of suchwell and reservoir parameters, which enables com-
parisons of pressure behavior from different wells. Additionally, di-
mensionless variables yields solution that are independent of the unit
system.

We have already seen that the infinitely acting solution is charac-
terized by the dimensionless group

𝜉 = 𝑟2
4𝜂𝑡 . (3.30)
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In well testing, the well radius is a
characteristic length.

The characteristic time is defined such
that the dimensionless diffusivity
equation has a simple form.

Dimensionless pressure is measured
relative to a datum pressure 𝑝𝑖 .

The diffusivity equation itself can also be expressed on dimension-
less form using dimensionless variables for space, time, and pressure.
Dimensionless variables are variables measured in terms of a charac-
teristic scale for that variable. In the well testing context the charac-
teristic length is the well radius 𝑟𝑤 with corresponding dimensionless
radius

𝑟𝐷 = 𝑟
𝑟𝑤

. (3.31)

We introduce a similar dimensionless time variable 𝑡𝐷 = 𝑡/𝑡𝑐, where 𝑡𝑐
is a characteristic time. Using a general direction 𝑥𝐷 = 𝑥/𝑟𝑤, we have
the following equality’s:

𝜕
𝜕𝑥 = 𝜕𝑥𝐷

𝜕𝑥
𝜕
𝜕𝑥𝐷

= 1
𝑟𝑤

𝜕
𝜕𝑥𝐷

𝜕
𝜕𝑡 =

𝜕𝑡𝐷
𝜕𝑡

𝜕
𝜕𝑡𝐷

= 1
𝑡𝑐

𝜕
𝜕𝑡𝐷

. (3.32)

If we use the dimensionless space variables into the diffusivity equa-
tion (2.16),

𝜂∇2𝑝 = 𝜕
𝜕𝑡𝑝 , (3.33)

we obtain
𝜂 1
𝑟2𝑤
∇2
𝐷𝑝 =

1
𝑡𝑐

𝜕
𝜕𝑡𝐷

𝑝 , (3.34)

where ∇𝐷 use derivation with respect to the dimensionless variable
(e.g. 𝜕

𝜕𝑥𝐷
). From Eq. (3.34) we see that the diffusivity equation can be

written on a simple form, the dimensionless diffusivity equation:

∇2
𝐷𝑝 =

𝜕
𝜕𝑡𝐷

𝑝 , (3.35)

if the characteristic time is defined as

𝑡𝑐 =
𝑟2𝑤
𝜂 . (3.36)

From Eq. (2.15) we have that the unit for the hydraulic diffusivity is
m2/s, thus we observer that 𝑡𝐷 is actually dimensionless.

We see from the general steady state solution for radial flow (2.36),
that the characteristic scale for pressure is

𝑝𝑐 =
𝑄𝜇
2𝜋𝑘ℎ , (3.37)

and we may also use use the initial reservoir pressure, 𝑝𝑖, as a datum
pressure. The dimensionless pressure is then

𝑝𝐷 = 𝑝𝑖 − 𝑝
𝑝𝑐

= (𝑝𝑖 − 𝑝)2𝜋𝑘ℎ𝑄𝜇 . (3.38)

Note that the derivative of the dimensionless pressure and the true
pressure have opposite sign.

Summing up Eqs. (3.31)), (3.36), and (3.38), we have the following
dimensionless variables:

𝑟𝐷 = 𝑟
𝑟𝑤

𝑡𝐷 = 𝜂
𝑟2𝑤
𝑡 𝑝𝐷 = 𝑝𝑖 − 𝑝

𝑝𝑐
. (3.39)
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These are the dimensionless variables most commonly used in the
well testing context.

The general steady state solution for radial flow (2.36),

𝑝 = 𝑝𝑤 + 𝑝𝑐 ln (
𝑟
𝑟𝑤
) , (3.40)

can be rearranged as:

𝑝𝑖 − 𝑝
𝑝𝑐

= 𝑝𝑖 − 𝑝𝑤
𝑝𝑐

− ln ( 𝑟𝑟𝑤
) . (3.41)

Substituting with dimensionless variables, we then obtain the dimen-
sionless form of the general steady state solution for radial flow:

𝑝𝐷 = 𝑝𝐷𝑤 + ln (𝑟𝐷) . (3.42)

To translate equations with partial derivatives into the dimension-
less variables given above, we need to replace the partial derivatives
with their dimensionless versions:

𝜕𝑟𝐷
𝜕𝑟 = 1

𝑟𝑤
𝜕𝑡𝐷
𝜕𝑡 = 𝜂

𝑟2𝑤
𝜕𝑝
𝜕𝑝𝐷

= −𝑝𝑐 . (3.43)

From the diffusivity equation using dimensionless radius and
time (3.35), we can change of variable to dimensionless pressure:

∇2
𝐷𝑝 =

𝜕𝑝
𝜕𝑡𝐷

∇𝐷 ⋅ 𝜕𝑝
𝜕𝑝𝐷

∇𝐷𝑝𝐷 = 𝜕𝑝
𝜕𝑝𝐷

𝜕𝑝𝐷
𝜕𝑡𝐷

∇𝐷 ⋅ (−𝑝𝑐)∇𝐷𝑝𝐷 = −𝑝𝑐
𝜕𝑝𝐷
𝜕𝑡𝐷

. (3.44)

By dividing out the (scalar) characteristic pressure on both sides, we
obtain the dimensionless diffusivity equation as

∇2
𝐷𝑝𝐷 = 𝜕

𝜕𝑡𝐷
𝑝𝐷 . (3.45)

Substituting Eq. (3.44) into the diffusivity equation in cylindrical co-
ordinates we obtain

𝜂
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑝
𝜕𝑟 ) =

𝜕
𝜕𝑡𝑝

𝜂
𝑟
𝜕𝑟𝐷
𝜕𝑟

𝜕
𝜕𝑟𝐷

(𝑟 𝜕𝑝𝜕𝑝𝐷
𝜕𝑟𝐷
𝜕𝑟

𝜕𝑝𝐷
𝜕𝑟𝐷

) = 𝜕𝑝
𝜕𝑝𝐷

𝜕𝑡𝐷
𝜕𝑡

𝜕𝑝𝐷
𝜕𝑡𝐷

𝜂
𝑟
1
𝑟𝑤

𝜕
𝜕𝑟𝐷

(𝑟(−𝑝𝑐)
1
𝑟𝑤
𝜕𝑝𝐷
𝜕𝑟𝐷

) = −𝑝𝑐
𝜂
𝑟2𝑤
𝜕𝑝𝐷
𝜕𝑡𝐷

. (3.46)

By rearranging this equation, we obtain the dimensionless diffusivity
equation with cylindrical coordinates:

1
𝑟𝐷

𝜕
𝜕𝑟𝐷

(𝑟𝐷
𝜕𝑝𝐷
𝜕𝑟𝐷

) = 𝜕𝑝𝐷
𝜕𝑡𝐷

. (3.47)

Similarly, the infinite acting line source solution for the pressure
in the reservoir (3.17) is:

𝑝𝐷(𝑟𝐷, 𝑡𝐷) =
1
2 E1(

𝑟2𝐷
4𝑡𝐷

) , (3.48)
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2 A. F. Van Everdingen and W. Hurst.
“The Application of the Laplace Trans-
formation to Flow Problems in Reser-
voirs.” In: Petroleum Transactions,
AIME (Dec. 1949), pp. 305–324. DOI :
10.2118/949305-G.
3 The integral in Eq. (3.50) is well
behaved and can be evaluated using a
standard integration routine in most
math packages. It should be noted,
however, that a the more general
expression for 𝑟 > 𝑟𝑤 that appear in
A. F. Van Everdingen and W. Hurst is
not that well behaved.

and the logarithmic approximation for well pressure in the infinitely
acting drawdown test (3.29) is

𝑝𝐷𝑤(𝑡𝐷) =
1
2 (ln (4𝑡𝐷) − 𝛾 + 2𝑆) . (3.49)

Note that dimensionless variables are not unique, and the ones de-
fined in Eq. (3.39) are not the only set used even in the context of well
testing. When setting up the characteristic dimensionless equations
for detecting the distance to a sealing fault it is for instancemore nat-
ural to use the distance to the fault as a characteristic length than the
well radius.

3.4.1 Validity of equations for well pressure

The logarithmic expression for the well pressure given by Eq. (3.49)
is only valid for times longer than some characteristic time, depen-
dent on the wellbore radius, 𝑟𝑤. The error has two sources: first, the
logarithm is an approximation to the exponential integral, E1(⋅), and
second, the constant rate boundary condition is incorrectly placed at
𝑟 = 0 instead of at the sand face, 𝑟 = 𝑟𝑤. We will show below that
the requirement that the effect of these two approximations shall be
negligible essentially lead to the same criterion for selecting the char-
acteristic time.

The exact infinite acting solution (with the constant rate boundary
condition at 𝑟 = 𝑟𝑤) for the pressure in the well is2

𝑝𝐷𝑤(𝑡𝐷) =
2
𝜋2 ∫

∞

0

1 − exp(−𝑢2𝑡𝐷)
𝑢2 (J1(𝑢)2 + Y1(𝑢)2)

𝑑𝑢 , (3.50)

where 𝐽1(⋅) and 𝑌1(⋅) are Bessel functions3.
In Fig. 3.8 we have plotted the infinite acting solution for well pres-

sure (3.48) (red line), together with the expressions logarithmic ap-
proximation (3.49) (blue line), and the exact solution (3.50).
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2 (ln(4𝑡𝐷) − 𝛾)

Figure 3.8: Comparing the exact so-
lution for well pressure (blue line)
with the line source solution (red line)
and the logarithmic approximation
(green line). 𝑝𝐷 and 𝑡𝐷 are dimension-
less pressure and time as defined in
Eq. (3.39).

The infinite acting solution for well pressure (3.48) is accurate
within 1% for

𝑡𝐷 > 100 , (3.51)

https://doi.org/10.2118/949305-G
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Validity of infinite acting solution

which corresponds to

𝑡 > 100 ⋅ 𝑟
2
𝑤
𝜂 . (3.52)

This is reflected in the plot in Fig. 3.8. This validity range is in good
agreement with the validity range obtained for the logarithmic ap-
proximation (3.20), which for 𝑟 = 𝑟𝑤 gives

𝑡 > 100 ⋅ 𝑟
2
𝑤
4𝜂 , (3.53)

which corresponds to
𝑡𝐷 > 25 . (3.54)

We observe from the plots in Fig. 3.8 that the validity range for the
logarithmic approximation is in fair agreementwith the validity range
of the infinite acting solution.

Note that the early time behavior is also influenced by skin and
wellbore-effects, and it will be shown (see page 38) that the so called
wellbore storage effect in most cases last for times longer that the
time defined by Eq. (3.52).

Having determined the lower time limit for the validity of
Eq. (3.29), we now turn to the upper time for its validity. The well
pressure behaves as if the reservoir were infinite as long as the pres-
sure signal is not yet reflected back from the outer (nearest) boundary.
Let the distance to the outer boundary be 𝑟𝑜, then the reflected pressure
change must travel 2𝑟𝑜 to influence pressures near the wellbore. The
time–space dependency of the pressure is given by E1(𝜉), and the in-
finite acting solution is valid to within 1% as long as E1(𝜉(2𝑟𝑜)) < 0.01,
that is for 𝜉 > 4 or

𝑡 < 𝑟2𝑜
4𝜂 (3.55)

Eq. (3.49) is valid (eqs. (3.52) and (3.55)) for dimensionless times

100 < 𝑡𝐷 < 𝑟2𝐷𝑜
4 , (3.56)

where 𝑟𝐷𝑜 is the dimensionless distance to the outer boundary.

3.5 Permeability and skin

In this sectionwewill describe how the reservoir permeability and the
skin factor of the well can be found by analyzing the well test data.

The pressure response in an ideal drawdown test was derived in the
previous section (Eq. (3.29));

𝑝𝑤(𝑡) = 𝑝𝑖 −
𝑝𝑐
2 (ln (4𝜂𝑡

𝑟2𝑤
) − 𝛾 + 2𝑆) . (3.57)

Rearranging this equation and writing out the characteristic pressure
𝑝𝑐 = 𝑄𝜇/(2𝜋𝑘ℎ), we get

𝑝𝑤(𝑡) = − 𝑄𝜇
4𝜋𝑘ℎ ln(𝑡) + [𝑝𝑖 −

𝑄𝜇
4𝜋𝑘ℎ (ln (

4𝜂
𝑟2𝑤
) − 𝛾 + 2𝑆)]

= 𝑚 ln(𝑡) + 𝐶 ,
(3.58)
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SPE Metric SI

ℎ 10m 10m
𝑄 100m3/d 1.16 × 10−3m3/s
𝑟𝑤 0.12m 0.12m
𝜇 1 cP 1 × 10−3 Pa s
𝜙 0.2 0.2
𝑐𝑡 1 × 10−4 bar−1 1 × 10−9 Pa−1

Table 3.2: Basic data for the example
well test.

where𝑚 = −𝑄𝜇/(4𝜋𝑘ℎ) and 𝐶 are constants independent of time. We
see from Eq. (3.58) that if we plot the well pressure as a function of
ln(𝑡) (semilog plot), we should see a straight line with slope𝑚.

Figure 3.9: Semilog plot of a drawdown
test

The early part of the data will deviate from the straight line due
to wellbore and near wellbore effects, and the late time part of the
data will deviate due to the effect of boundaries or large scale hetero-
geneities, but permeability and skinmay be estimated using Eq.(3.57)
based on the part of the data that fall on a straight line.

Permeability may be estimated based on the slope, of the line, 𝑚.
As illustrated in Fig. 3.9:

𝑘 = − 𝑄𝜇
4𝜋ℎ

1
𝑚 . (3.59)

Once the permeability is known, the skin can be estimated from
the fitted straight line intercept or value on the straight line at any
other point in time 𝑡𝑠:

𝑆 = 1
2 (

𝑝(𝑡𝑠) − 𝑝𝑖
𝑚 − ln (4𝜂𝑡𝑠

𝑟2𝑤
) + 𝛾) . (3.60)

3.5.1 Example

We will go through an example to illustrate the procedure. Basic data
for the well test are given in Table 3.2.

A semilog plot of the data are shown in Fig. 3.10. The time between
0.1 and 10h can be fitted to a straight line. Based on the slope, 𝑚, of
this line, the permeability can be estimated using Eq. (3.59). We have

𝑄𝜇
4𝜋ℎ = 9.23 × 10−9m2/Pa (3.61)

Ideally we should estimate the slope by fitting all points in the linear
interval to a straight line (linear regression), but wemay also estimate
the slope by using the endpoints of interval:

𝑚 = 𝛥𝑝
𝛥 ln(𝑡) =

𝑝(𝑡1) − 𝑝(𝑡2)
ln ( 𝑡1

𝑡2
)

= −8.66 × 106 − 8.24 × 106

ln(100) Pa−1

= 9.12 × 104 Pa−1

(3.62)
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Figure 3.10: Plot of example data

Figure 3.11: Non-ideal flow schedule
due to wellbore storage

Inserting Eqs. (3.61) and (3.62) into Eq. (3.59) gives the permeability
estimate:

𝑘 = 9.23 × 10−9

9.12 × 104
m2 = 1.01 × 10−13m2

= 101mD
(3.63)

The skin can be estimated based on the initial pressure at 𝑝𝑖 =
100 bar = 100 × 105 Pa and any pressure on the straight line. We will
use the pressure at 𝑡𝑠 = 1h:

ln ( 4𝑘
𝜇𝜙𝑐𝑡𝑟2𝑤

⋅ (3600 s)) = 13.1 , (3.64)

and the pressure difference is

(𝑝𝑖−𝑝𝑤(𝑡𝑠)) = 100 × 105 Pa−84.5 × 105 Pa = 15.5 × 105 Pa . (3.65)

We get a skin factor estimate by inserting Eqs. (3.64) and (3.65) into
Eq. (3.60):

𝑆 = 1
2 (

15.5 × 105

9.12 × 104
− 13.1 + 0.5772) = 2.2 (3.66)

3.6 Wellbore storage effect

Due to the presence of the wellbore, the ideal constant flow boundary
conditions are never obtained. The effect is especially important for
the early time part of surface controlled well tests, and it is crucial
to distinguish the effects of wellbore storage from the interpretable
reservoir response. Actual down hole boundary conditions are illus-
trated in Fig. 3.11.

When a well is opened there is a lag time before the flow through
to sand face reach a constant rate, and when a well is shut in, the sand
face flow rate does not go to zero instantaneously.

In the following a simple model for the wellbore storage effect will
be presented. The model is based on the assumption of a wellbore
filled with a liquid with constant compressibility, 𝑐𝑙 . The initial pro-
duction at constant surface rate is due to expansion of liquid in the
wellbore. The situation is illustrated in Fig. 3.12.
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Figure 3.12: The liquid filled wellbore
and the corresponding model for the
wellbore storage effect

Note: 𝐵 = 𝑄/𝑄𝑠 is the formation
volume factor

Wellbore storage constant.

Initially, the well pressure varies
linearly with time due to wellbore
storage.

If 𝑄(𝑡) is the production rate from the reservoir, and 𝑄𝑠 is the con-
trolled production rate at the surface, we may express the mass bal-
ance in the wellbore volume,

“Mass in” - “Mass out” = “Change in mass” ,

as

𝜌(𝑄(𝑡) − 𝑄𝑠𝐵) =
𝜕
𝜕𝑡 (𝜌𝑉𝑤)

= 𝑉𝑤
𝜕𝜌
𝜕𝑝𝑤

𝜕𝑝𝑤
𝜕𝑡

= 𝑉𝑤𝑐𝑙𝜌
𝜕
𝜕𝑡𝑝𝑤

, (3.67)

where the total wellbore volume 𝑉𝑤 is assumed constant, and 𝑐𝑙 =
1
𝜌

𝜕𝜌
𝜕𝑝𝑤

is the liquid compressibility as defined in Eq. (2.6).

The equation governing the well pressure is

𝑄(𝑡) − 𝑄𝑠𝐵 = 𝐶𝑠
𝑑
𝑑𝑡𝑝𝑤 , 𝐶𝑠 = 𝑐𝑙𝑉𝑤 . (3.68)

Here 𝐶𝑠 is defined as the wellbore storage constant.
The reservoir production rate 𝑄(𝑡) serve as a boundary condition

for the diffusivity equation that governs the pressure in the reservoir.
We have a set of coupled equations for reservoir and well. However,
for small 𝑡most of the production is due to the expansion of the fluid
in the wellbore, and we have 𝑄(𝑡) ≈ 0:

𝑝𝑤 = 𝑝𝑖 −
𝑄𝑠𝐵
𝐶𝑠

𝑡 (3.69)

This early time wellbore storage equation can be utilized to estimate
the wellbore storage constant coefficient from a time versus pressure
plot. When the liquid compressibility 𝑐𝑙 is known, thiswould then give
an estimate of the wellbore volume𝑉𝑤. A largemismatch between the
tubing and casing volume below the test valve and the estimatedwell-
bore volume from the early time wellbore storage equation could be
an indication of e.g. fractures around thewell, as such fractureswould
effectively contribute to the wellbore volume 𝑉𝑤 in our equations.
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Dimensionless wellbore storage con-
stant.

Downhole control valves minimize
wellbore storage.

4 R. Agarwal R. G. Al-Hussainy and H. J
Ramey. “An Investigation of Wellbore
Storage and Skin in Unsteady Liquid
Flow - I. Analytical Treatment.” In:
SPE Journal 10.3 (Sept. 1970), pp. 279–
290. DOI : 10.2118/2466-PA.

Figure 3.13: Segregating two-phase
mixture in well-bore

We may introduce the dimensionless time and well pressure vari-
ables (Eq. (3.39))

𝑡𝐷 = 𝑘
𝜇𝜙𝑐𝑡𝑟2𝑤

𝑡 𝑝𝐷𝑤 = (𝑝𝑖 − 𝑝𝑤)
2𝜋𝑘ℎ
𝑄𝜇 ,

to express Eq. (3.69) as

𝑝𝐷𝑤 = 1
𝐶𝑠𝐷

𝑡𝐷 , (3.70)

where 𝐶𝑠𝐷 is a dimensionless wellbore storage constant. We see by
inserting the dimensionless variables into Eq. (3.69) that the dimen-
sionless storage constant is

𝐶𝑠𝐷 = 1
2𝜋𝜙𝑐𝑡ℎ𝑟2𝑤

𝐶𝑠

= 1
2𝜙

𝑐𝑙
𝑐𝑡
( 𝑉𝑤
𝜋𝑟2𝑤ℎ

)
. (3.71)

From Eq. (3.71) we observe that the 𝐶𝑠𝐷 is proportional to the ratio
of total wellbore volume to the wellbore volume in the completed in-
terval. The dimensionless wellbore storage constant 𝐶𝑠𝐷 is therefore
always larger than one, and can be very large in long and deep wells.
Values close to one can only be obtained in a test controlled by down-
hole rates and build up tests controlled by downhole valves.

Inspection of the solution to the fully coupled wellbore–reservoir
system have shown4 that the wellbore storage effect must be taken
into account for times

𝑡𝐷 < 60𝐶𝑠𝐷 . (3.72)

Since typically 𝐶𝑠𝐷 ≫ 1, wellbore storage tend to obscure the region
where we need to take into account the difference between a finite
wellbore solution and the line-source solution (3.52).

The model for wellbore storage that has been presented in this
chapter is very simplified, and the validity of the model in real world
situations may be questioned. Themain complicationmay be that oil
wells tend to produce two phase at surface, and that prior to a buildup
the wellbore usually contains a two-phase mixture which segregate
after shutdown. In a drawdown test the situation is reversed, and in
an appraisal well test drawdown there is a period of rising liquid level
until fluid reaches the wellhead.

https://doi.org/10.2118/2466-PA


Figure 4.1: Ideal drawdown–buildup
sequence

4
Buildup test

In a buildup test, a well that ideally have been producing at a constant
rate is shut, and the bottom hole pressure is recorded. Well tests in
exploration wells and new wells are often performed as a drawdown–
buildup sequence as shown in Fig. 4.1.

In addition to providing data for reservoir characterization, such as
permeability and skin, buildup tests can also provide data for reser-
voir monitoring, in particular reservoir pressure data.

Planned buildup tests have a cost in terms of lost production, and
this will limit the amount of available late time shut in data. How-
ever, production wells normally do not produce at 100% efficiency,
and in wells with permanent downhole pressure gauges the periods
of unplanned shut-in may provide valuable well test data at no extra
cost.

It is easier to get high quality data from buildup than from draw-
down since maintaining zero rate is trivial compared to maintaining
a fixed rate, and the effect of wellbore storage is minimized by using
a dowhhole valve.

Ideally rates should be stable before shut-in, and the determina-
tion of the effective production time, which is used in the analysis,
can be challenging.

4.1 Superposition principle

In this section we will present the superposition principle. Let ℒ be
a partial differential operator, such that

ℒ𝑝 = 0 , (4.1)

is a partial differential equation for functions 𝑝. Further, let

𝒢𝑝 = 𝑓 (4.2)

be a operator giving the boundary conditions. In our case, ℒ would
be the diffusivity equation in the region given by the reservoir, while
𝒢 would be an operator that restricts 𝑝 to the boundary of the reser-
voir (e.g. the boundary given by 𝑟 = 𝑟𝑤), and 𝑓 would be the function
that 𝒢𝑝 is required to equal on the boundary of the reservoir (e.g. a
constant rate in the well).
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Superposition can be used to add so-
lutions to linear differential equations
with linear boundary conditions.

Figure 4.2: Buildup test rate history
with production time 𝑡𝑝 and buildup
time 𝛥𝑡

Figure 4.3: Equivalent two-well rate
history for build up using superposi-
tion. One well (in blue) has rate𝑄 and
the other well (in red) has the opposite
rate −𝑄. The sum of the rates is the
same as the buildup test rate in Fig. 4.2

We say that an operatorℒ is linear if

ℒ (𝑝1 + 𝑝2) = ℒ𝑝1 +ℒ𝑝2
ℒ (𝑐𝑝) = 𝑐ℒ𝑝 ,

(4.3)

where 𝑐 is a scalar. The linearity of an operator ℒ makes it impossi-
ble to do operations such as taking the square of the function 𝑝, but
it allows for taking the second derivative. Thus, the diffusivity equa-
tion (2.13) is a linear partial differential equation.

The superposition principle states that for all linear systems, the net
response caused by two or more stimuli is the sum of the responses
that would have been caused by each stimulus individually.

We observe that solutions to linear differential equations with lin-
ear boundary conditions obey superposition: Given two functions
𝑝1(𝑥, 𝑡) and 𝑝2(𝑥, 𝑡) that are solutions toℒ𝑝𝑖 = 0 with boundary con-
ditions

𝒢𝑝1 = 𝑓1(𝑥, 𝑡) and 𝒢𝑝2 = 𝑓2(𝑥, 𝑡) , (4.4)

where bothℒ and𝒢 is linear operators. Then 𝑝 = 𝑝1+𝑝2 is a solution
to

ℒ𝑝 = 0 (4.5)

with boundary condition

𝒢𝑝 = 𝑓1(𝑥, 𝑡) + 𝑓2(𝑥, 𝑡) . (4.6)

In this chapter we will use the superposition principle in time to
obtain solutions to buildup in terms of the fundamental solution to
drawdown derived in the previous chapter (Eq. (3.17)). In later chap-
ters we will show how the superposition principle can be used in
space to obtain solutions that take into account the effect of reser-
voir boundaries (See page 65).

The pressure solution for a drawdown-buildup sequence in awell is
the same as the sumof the solutions for twowells in the same location
that is started at different times. Note that due to the outer boundary
condition, 𝑝(∞, 𝑡) = 𝑝𝑖, it is the pressure 𝑝−𝑝𝑖 that has this property.

An ideal buildup test has the rate history (boundary condition)
shown in Fig. 4.2. By superposition, this can be replaced by two wells
in the same location that is started at different times with opposite
rates as shown in Fig. 4.3.

4.2 Horner analysis

We will now derive the well pressure for a well test where both the
production time 𝑡𝑝 and buildup time 𝛥𝑡 is short enough to employ the
transient infinitely acting solution. Due to superposition, the expres-
sion for well pressure during buildup will contain two terms: One for
a well with constant rate 𝑄 starting at time 𝑡 = 0, and one for a well
with constant rate −𝑄 starting at time 𝑡 = 𝑡𝑝. Apart from the period
dominated bywellbore storage and skin effects just after start of shut-
in, we can use the logarithmic approximation (3.29) for both terms:
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Characteristic pressure 𝑝𝑐 =
𝑄𝜇
2𝜋𝑘ℎ

𝑝1 − 𝑝𝑖 = − 𝑄𝜇
4𝜋𝑘ℎ [ln (4𝜂

(𝑡𝑝 + 𝛥𝑡)
𝑟2𝑤

) − 𝛾 + 2𝑆]

𝑝2 − 𝑝𝑖 =
𝑄𝜇
4𝜋𝑘ℎ [ln (4𝜂

𝛥𝑡
𝑟2𝑤
) − 𝛾 + 2𝑆] ,

(4.7)

where the well with pressure 𝑝1 has rate 𝑄 and the well with pressure
𝑝2has rate −𝑄. Note that when we superposition two solutions to the
partial differential operator ℒ, we also add the boundary conditions
𝒢𝑝 = 𝑓. Since ℒ𝑝𝑖 = 0 for any scalar 𝑝𝑖 when ℒ is the operator for
the diffusivity equation, we can use 𝑝 − 𝑝𝑖 to ensure that the outer
boundary condition stays zero, thus 𝑝(∞, 𝑡) = 𝑝𝑖 for all solutions.

Applying the superposition principle, where we note that any ef-
fect of skin is equal in both terms and cancel out, we obtain:

𝑝𝑤 − 𝑝𝑖 = (𝑝1 − 𝑝𝑖) + (𝑝2 − 𝑝𝑖)

= − 𝑄𝜇
4𝜋𝑘ℎ [ln (

4𝜂(𝑡𝑝 + 𝛥𝑡)
𝑟2𝑤

) − ln (4𝜂𝛥𝑡
𝑟2𝑤

)]

= −𝑝𝑐2 ln (
𝑡𝑝 + 𝛥𝑡
𝛥𝑡 ) .

(4.8)

This can be rearranged as

𝑝𝑤 = 𝑝𝑖 −
𝑝𝑐
2 ln (

𝑡𝑝 + 𝛥𝑡
𝛥𝑡 )

= 𝑚 ln (
𝑡𝑝 + 𝛥𝑡
𝛥𝑡 ) + 𝐶,

(4.9)

where𝑚 = −𝑝𝑐/2 and 𝐶 are constants independent of time. Note that
𝑚 equals the constant in Eq. (3.58) for the drawdown test. However,
while the pressure was a function of ln (𝑡) in the drawdown test, we
observe that pressure is a function of ln [(𝑡𝑝 + 𝛥𝑡)/𝛥𝑡] in this buildup
test. The corresponding plot of 𝑝𝑤 versus is ln [(𝑡𝑝 + 𝛥𝑡)/𝛥𝑡] is called
the Horner plot (see Fig. 4.4).

Figure 4.4: An example of a Horner
plot, where pressure is plotted as a
function of ln [(𝑡𝑝 +𝛥𝑡)/𝛥𝑡]. Perme-
ability and skin is estimated from the
straight line fit. Note that increasing
time goes from right to left on the
x-axis.

The time (𝑡𝑝 +𝛥𝑡)/𝛥𝑡 is sometimes referred to as Horner time. Ob-
serve that (𝑡𝑝 + 𝛥𝑡)/𝛥𝑡 decreases when 𝛥𝑡 increases. Further, infinite
time 𝛥𝑡 → ∞ corresponds to (𝑡𝑝 + 𝛥𝑡)/𝛥𝑡 → 1.
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Permeability

Similar to the drawdown test, the permeability can be estimated
based on the derivative of well pressure as a function of ln ( 𝑡𝑝+𝛥𝑡

𝛥𝑡
).

The slope,𝑚, of the straight line on the Horner plot (Eq. (4.8)) is

𝑚 = 𝑑𝑝𝑤
𝑑ln ( 𝑡𝑝+𝛥𝑡

𝛥𝑡
)
= −𝑝𝑐2 = − 𝑄𝜇

4𝜋𝑘ℎ , (4.10)

which gives the permeability

𝑘 = − 𝑄𝜇
4𝜋ℎ

1
𝑚 . (4.11)

The slope should be determined by fitting a straight line to the pres-
sure points in the linear region. If we, for simplicity, use two points
on the straight line corresponding to 𝛥𝑡1 and 𝛥𝑡2, where 𝛥𝑡1 < 𝛥𝑡2.
Then (𝑡𝑝 + 𝛥𝑡1)/𝛥𝑡 > (𝑡𝑝 + 𝛥𝑡2)/𝛥𝑡2, so

𝑚 = 𝑝𝑤(𝛥𝑡1) − 𝑝𝑤(𝛥𝑡2)
ln ( 𝑡𝑝+𝛥𝑡1

𝛥𝑡1
) − ln ( 𝑡𝑝+𝛥𝑡2

𝛥𝑡2
)

= 𝑝𝑤(𝛥𝑡1) − 𝑝𝑤(𝛥𝑡2)
ln ( 𝑡𝑝+𝛥𝑡1

𝛥𝑡1
𝛥𝑡2

𝑡𝑝+𝛥𝑡2
)

.
(4.12)

We then have

𝑘 = − 𝑄𝜇
4𝜋ℎ

1
𝑚 = 𝑄𝜇

4𝜋ℎ
1
−𝑚

= 𝑄𝜇
4𝜋ℎ

⎡⎢⎢⎢
⎣

ln ( 𝛥𝑡1
𝑡𝑝+𝛥𝑡1

𝑡𝑝+𝛥𝑡2
𝛥𝑡2

)

𝑝𝑤(𝛥𝑡1) − 𝑝𝑤(𝛥𝑡2)
⎤⎥⎥⎥
⎦

.
(4.13)

Plots are often log10 based, and it is natural to select 𝑡+𝛥𝑡1
𝛥𝑡1

and 𝑡+𝛥𝑡2
𝛥𝑡2

one decade apart. Since ln(10)
4𝜋

≈ 0.183 we then have

𝑘 = 0.183 𝑄𝜇
ℎ (𝑝𝑤(𝛥𝑡1) − 𝑝𝑤(𝛥𝑡2))

. (4.14)

The Horner analysis also provide an estimate for the skin. The
pressure after shut-in (Eq. (4.8)),

𝑝𝑤(𝑡𝑝 + 𝛥𝑡) = 𝑝𝑖 −
𝑝𝑐
2 ln (

𝑡𝑝 + 𝛥𝑡
𝛥𝑡 ) , (4.15)

is independent of skin, while the pressure just before shut-in,

𝑝𝑤(𝑡𝑝) = 𝑝𝑖 −
𝑝𝑐
2 (ln (4𝜂

𝑟2𝑤
𝑡𝑝) − 𝛾 + 2𝑆) , (4.16)

is skin dependent. By subtracting Eqs. (4.15) and (4.16) we get

𝑝𝑤(𝑡𝑝 + 𝛥𝑡) − 𝑝𝑤(𝑡𝑝) =
𝑝𝑐
2 [ln (4𝜂

𝑟2𝑤
𝑡𝑝𝛥𝑡
𝑡𝑝 + 𝛥𝑡) − 𝛾 + 2𝑆] . (4.17)

Thus, when the permeability and pressure at start of shut in is known,
the skin factor may me estimated based on the pressure at a specific
time 𝛥𝑡 after shut in.

𝑆 = 1
𝑝𝑐

(𝑝𝑤(𝑡𝑝 + 𝛥𝑡) − 𝑝𝑤(𝑡𝑝)) −
1
2 ln (

4𝜂
𝑟2𝑤

𝑡𝑝𝛥𝑡
𝑡𝑝 + 𝛥𝑡) +

𝛾
2

= − 1
2𝑚 (𝑝𝑤(𝑡𝑝 + 𝛥𝑡) − 𝑝𝑤(𝑡𝑝)) −

1
2 ln (

4𝜂
𝑟2𝑤

𝑡𝑝𝛥𝑡
𝑡𝑝 + 𝛥𝑡) +

𝛾
2 .

(4.18)
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Skin

Effective production time

Typically the straight line extrapolated pressure at 𝑡𝑝+𝛥𝑡
𝛥𝑡

= 1 (i.e.
infinite time), 𝑝∗, (see Fig. 4.4) is used:

𝑆 = − 1
2𝑚 (𝑝∗ − 𝑝𝑤(𝑡𝑝)) −

1
2 ln (

4𝜂𝑡𝑝
𝑟2𝑤

) + 𝛾
2 . (4.19)

In the derivations above we have assumed a constant production
rate in the whole production period. This may not always be possible
to obtain, especially for unplanned shut down periods. In these cases
we may use the effective production time (also known as equivalent
constant rate drawdown time), defined as

𝑡𝑒𝑝 =
∫𝑡𝑝
0 𝑄(𝜏)𝑑𝜏
𝑄(𝑡𝑝)

. (4.20)

The basis for the approximation is not rigorous, but it is adequate if
the most recent flow rate is reasonably stable and maintained long
enough.

The Horner analysis is based on the infinite acting solution, so it is
only valid if the production and drawdown period is short (Eq. (3.55)):

𝑡𝑝 + 𝛥𝑡max <
𝑟2𝑜
4𝜂 =

𝜇𝜙𝑐𝑡𝑟2𝑜
4𝑘 , (4.21)

where 𝑟𝑜 is the outer radius of the reservoir (distance to closest bar-
rier). Note, however, that the Horner analysis can be approximately
extended so that it may be used for analyzing transient buildups out-
side of this strict area of validity (see page 49). When 𝛥𝑡 goes to in-
finity, we have

𝛥𝑡 → ∞ ⇒
𝑡𝑝 + 𝛥𝑡
𝛥𝑡 → 1 ⇒ ln (

𝑡𝑝 + 𝛥𝑡
𝛥𝑡 ) → 0 . (4.22)

We thus see from Eq. (4.8) that the extrapolated pressure at infinite
time𝑝∗ should equal𝑝𝑖 whenever theHorner approximation is strictly
valid. Any deviation from this is an indication of depletion, and we
will see later (page 58) that 𝑝∗ plays a role when estimating reservoir
pressure in the generalized Horner analysis.

When 𝑡𝑝 ≫ 𝛥𝑡 we have 𝑡𝑝 + 𝛥𝑡 ≃ 𝑡𝑝. Using this approximation for
long production times 𝑡𝑝, then Eq. (4.9) simplifies to

𝑝𝑤 = 𝑚 ln (
𝑡𝑝 + 𝛥𝑡
𝛥𝑡 ) + 𝐶 ≃ 𝑚 ln (

𝑡𝑝
𝛥𝑡) + 𝐶

= −𝑚 ln (𝛥𝑡) + 𝐶′ ,
(4.23)

thus a plot of pressure versus𝛥𝑡would yield a straight line fromwhich
one could estimate permeability and skin. However, a large 𝑡𝑝 might
violate the validity range of the infinite acting solution. In the next
sectionwill will consider amore general treatment of long production
periods.

4.3 Example

In this example section we will employ Horner analysis on a buildup
test. We assume that a vertical discovery well is produced at a reser-
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SPE Metric SI

ℎ 10m 10m
𝑄 100m3/d 1.16 × 10−3m3/s
𝑟𝑤 0.12m 0.12m
𝜇 0.6 cP 6 × 10−4 Pa s
𝜙 0.2 0.2
𝑐𝑡 2.6 × 10−4 bar−1 2.6 × 10−9 Pa−1

Table 4.1: Basic data for example.

voir rate of 100.0m3/d for a period of 12 hours prior to a closure for
an initial pressure buildup survey. The production data and estimated
reservoir andfluid properties are summarized inTable 4.1. Weassume
that the well is completed across the entire formation.

The plot of the pressure development is shown in Fig. 4.5. We
can now estimate the permeability and skin based on Eq. (4.11) and
Eq. (4.19), respectively. We start with the permeability.

101 102 103 104 105
𝑡𝑝 + 𝛥𝑡
𝛥𝑡 [𝑠𝑒𝑐𝑜𝑛𝑑𝑠𝑒𝑐𝑜𝑛𝑑]
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Figure 4.5: The pressure data from the
buildup test in a Horner plot.

For estimating the permeability we need the slope of the straight
part of the pressure curve in the Horner plot. We observe
that the curve is approximately straight between 101 and 102,
which corresponds to pressures of approximately 2.798 × 107 Pa and
2.793 × 107 Pa, respectively. We can then calculate the slope𝑚 of the
straight part as

𝑚 ≃ 2.793 × 107 Pa − 2.798 × 107 Pa
ln(102) − ln 101 = −2.17 × 104 Pa . (4.24)

Employing Eq. (4.11) we can then estimate the permeability as

𝑘 = − 𝑄𝜇
4𝜋ℎ𝑚

= 100.0m3/d ⋅ 6.0 × 10−4 Pa s
8.64 × 104 s/d ⋅ 4𝜋 ⋅ 10.0m ⋅ 2.17 × 104 Pa

= 2.55 × 10−13m2

(4.25)
This corresponds to approximately 255 mD.

For Eq. (4.19) we need the pressure at shut in, 𝑝𝑤(𝑡𝑝), and the pres-
sure at 𝑡𝑝+𝛥𝑡

𝛥𝑡
= 1 (i.e. infinite time), 𝑝∗, (see Fig. 4.4). By extrapolating

the curve in Fig. 4.5 to high values, we estimate the pressure at shut
in to be 𝑝𝑤(𝑡𝑝) ≃ 2.766 × 107 Pa. The pressure 𝑝∗ at (𝑡𝑝 +𝛥𝑡)/𝛥𝑡 = 1 is
estimated as 𝑝∗ = 2.804 × 107 Pa. This yields the following estimate
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Figure 4.6: Rate history for a general
buildup test

Figure 4.7: Equivalent rate history for
two wells in the same location

Permeability

for the skin from Eq. (4.19):

𝑆 = − 1
2𝑚 (𝑝∗ − 𝑝𝑤(𝑡𝑝)) −

1
2 ln (

4𝑘𝑡𝑝
𝜇𝜙𝑐𝑡𝑟2𝑤

) + 𝛾
2

= 1
2 ⋅ 2.24 × 104 Pa

(2.804 × 107 Pa − 2.766 × 107 Pa)

− 0.5 ∗ ln ( 4 ⋅ 2.47 × 10−13m2 ⋅ 12h ⋅ 3.6 × 103 s/h
6.0 × 10−4 Pa s ⋅ 0.2 ⋅ 2.6 × 10−9 1/Pa ⋅ (0.07m)2

) + 𝛾
2

= 0.46
(4.26)

Thus the well appears to have little skin.

4.4 Miller–Dyes–Hutchinson (MDH) analysis

The Horner analysis assumes infinite acting flow at shut-in, that is a
short production period. The Miller–Dyes–Hutchinson (MDH) anal-
ysis is based on the opposite assumption: That the stable production
period before shut-in is very long, so that pressure changes which
originates from production can be ignored compared to the pressure
changes due to shut-in.

Rates for a general buildup test are presented in Fig. 4.6. Based on
the superposition principle, this rate history may be replaced by two
wells with the rate history shown in Fig. 4.7 The well pressure before
shut in (𝑡 ≤ 𝑇) is

𝑝1(𝑡) − 𝑝𝑖 = −𝑄(𝑡)𝜇4𝜋𝑘ℎ [𝐹 (𝑡) + 2𝑆] , (4.27)

where 𝐹 (𝑡) is some function. If we assume infinite acting transient
solution for the second well producing at a constant rate −𝑄, the well
pressure is given by

𝑝2(𝑡) − 𝑝𝑖 =
𝑄𝜇
4𝜋𝑘ℎ [ln (

4𝜂
𝑟2𝑤
𝛥𝑡) − 𝛾 + 2𝑆] . (4.28)

Using the superposition principle, then the well pressure after shut in
(𝑡 > 𝑇) is

𝑝𝑤(𝛥𝑡) = 𝑝𝑖 −
𝑄𝜇
4𝜋𝑘ℎ [𝐹 (𝑇 + 𝛥𝑡) − ln (4𝜂

𝑟2𝑤
𝛥𝑡) + 𝛾] . (4.29)

Note that, just as in the Horner case, the well pressure after shut-in
is independent of skin. Subtracting Eqs. (4.27) and (4.29), and as-
suming that pressure changes which originates from production can
be ignored compared to the pressure changes due to shut in (that is
𝐹 (𝑇 + 𝛥𝑡) ≈ 𝐹 (𝑡), thus 𝑝1(𝑇 + 𝛥𝑡) ≃ 𝑝1(𝑇) = 𝑝𝑤(𝑇)), we get

𝑝𝑤(𝛥𝑡) − 𝑝𝑤(𝑇) =
𝑄𝜇
4𝜋𝑘ℎ (ln (

4𝜂
𝑟2𝑤
𝛥𝑡) − 𝛾 + 2𝑆) . (4.30)

We see that the pressure is linear in ln(𝛥𝑡), as illustrated in Fig. 4.8.
The permeability can be estimated based on the slope, 𝑚, of a fitted
straight line

𝑘 = 𝑄𝜇
4𝜋ℎ

1
𝑚 . (4.31)
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Figure 4.8: A plot of pressure versus
the logarithm of time (semilog plot),
commonly denoted a MDH plot. The
pressure is linear in ln(𝛥𝑡).

Skin

SPE Metric SI

ℎ 10m 10m
𝑄 100m3/d 1.16 × 10−3m3/s
𝑟𝑤 0.07m 0.07m
𝜇 0.6 cP 6 × 10−4 Pa s
𝜙 0.2 0.2
𝑐𝑡 2.6 × 10−4 bar−1 2.6 × 10−9 Pa−1

Table 4.2: Basic data for example.

Wemay alternatively select data at two times 𝛥𝑡1 and 𝛥𝑡2 on the line

𝑘 = 𝑄𝜇
4𝜋ℎ

ln (𝛥𝑡2
𝛥𝑡1

)
𝑝𝑤(𝛥𝑡2) − 𝑝𝑤(𝛥𝑡1)

. (4.32)

By solving for 𝑆 in Eq. (4.30), we see that the skin factor can be esti-
mated based on the well pressure at a specific time 𝛥𝑡𝑠 after shut-in:

𝑆 = 1
2𝑚 (𝑝𝑤(𝛥𝑡𝑠) − 𝑝𝑤(𝑇)) −

1
2 (ln (

4𝑘
𝜇𝜙𝑐𝑡𝑟2𝑤

𝛥𝑡𝑠) − 𝛾) . (4.33)

4.5 Example

In this example section we will employ MDH-analysis on a buildup
test. We assume that a vertical discovery well is produced at a reser-
voir rate of 100.0m3/d for a period of 50 days before closure for a pres-
sure buildup survey. The production data and estimated reservoir and
fluid properties are summarized in Table 4.2. We assume that the well
is completed across the entire formation.

A semi-log plot of the pressure development is shown in Fig. 4.9.
We can now estimate the permeability and skin based on Eq. (4.31)
and Eq. (4.33), respectively. We start with the permeability.
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Figure 4.9: The pressure data from the
buildup test in a semi-log plot. The
plot includes a stapled line indicating
the linear section of the pressure plot.
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For estimating the permeability we need the slope of the straight
part of the pressure curve in the semi-log plot. We observe that the
curve is approximately straight from 103 and on-wards. The extrapo-
lated line in Fig. 4.9 goes through the points (1 × 101 s, 2.74 × 107 Pa)
and (1 × 103 s, 2.76 × 107 Pa). This gives a slope of

𝑚 = 2.76 × 107 Pa − 2.74 × 107 Pa
ln(103) − ln(101) = 4.34 × 104 Pa . (4.34)

From Eq. (4.31) we can then estimate the permeability as

𝑘 = 𝑄𝜇
𝑚4𝜋ℎ

= 1.16 × 10−3m3/s ⋅ 6.0 × 10−4 Pa s
4.34 × 104 Pa ⋅ 4𝜋 ⋅ 10.0m

= 1.28 × 10−13m2 ≃ 129mD .

(4.35)

For Eq. (4.33) we need the pressure at shut in, 𝑝𝑤(𝑡𝑝). By extrap-
olating the plot in Fig. 4.9 to a low value, we can estimate the pres-
sure at shut in to approximately 𝑝𝑤(𝑡𝑝) = 2.705 × 107 Pa. Using the
point (𝛥𝑡𝑠, 𝑝𝑤(𝛥𝑡𝑠)) = (1 × 101 s, 2.74 × 107 Pa) we can then estimate
the skin as:

𝑆 = 1
2 (

𝑝𝑤(𝛥𝑡𝑠) − 𝑝𝑤(𝑡𝑝)
𝑚 − ln ( 4𝑘

𝜇𝜙𝑐𝑡𝑟2𝑤
𝛥𝑡𝑠) + 𝛾)

= 1
2 (

2.74 × 107 − 2.705 × 107

4.34 × 104
− 5.68 − ln(101) + 0.57721)

= 0.33

(4.36)

Thus the well appears to have little skin.

4.6 Slider analysis and desuperposition

As shown in Fig. 4.7, a buildup test is analyzed in terms of super-
position of the contribution from two wells: One well has the real
production history up to shut-in, and a constant rate at later times,
and another well has a constant negative rate after shut-in. In MDH
analysis we are assuming that the contribution from the first well is
zero, so the shut-in period that can be analyzed using MDH is lim-
ited. Any rate changes just prior to shut-in, which will contribute to
the transient behavior are also ignored. In this section we will first
discuss how the investigation period can be extended by taking into
account the projected (semi steady state) contribution from the first
well (Slider analysis), and secondly possible strategies for taking rate
changes into account will be discussed. In both cases, the effects from
the first well is incorporated into an effective pressure, and the anal-
ysis is performed in terms of 𝛥𝑡. This approach is called desuperposi-
tion.

In the next chapter we will see that pressure falls linearly in semi
steady state (Eq. (5.14)), and in Slider analysis the pressure differ-
ence in Eq. (4.30) is replaced by the linearly projected pressure devel-
opment as shown in Fig. 4.10. If we expand the pressure contribu-
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Figure 4.10: Slider analysis

Effective pressure difference by desu-
perposition.

Numerical desuperposition

tion from the first well (𝐹(𝑇 + 𝛥𝑡)) to first order in 𝛥𝑡, and subtract
Eqs. (4.27) and (4.29), we get

𝑝𝑤(𝛥𝑡) − 𝑝𝑤(𝑇) − 𝑚∗𝛥𝑡 = 𝑄𝜇
4𝜋𝑘ℎ (ln (

4𝜂
𝑟2𝑤
𝛥𝑡) − 𝛾 + 2𝑆) , (4.37)

where the pressure derivative𝑚∗ at time 𝑇 is

𝑚∗ = − 𝑑𝑝𝑤
𝑑𝑡

|||𝑡=𝑇
. (4.38)

So by defining the effective pressure difference,

𝛥𝑝ex(𝛥𝑡) = 𝑝𝑤(𝛥𝑡) − 𝑝𝑤(𝑇) − 𝑚∗𝛥𝑡 , (4.39)

we may extend the applicability of MDH type analysis. This effective
pressure can also be used in the diagnostic plots that will be intro-
duced on page 56, and used in several context thereafter.

Note that permanent dowhhole gauges are needed for obtaining
the pressure derivative. Alternatively the derivative can be provided
by reservoir simulation, however extreme caution should be observed
if doing so since it is very easy to end up with self confirming assump-
tions (circle arguments). The projected pressure will also compensate
for the effect of aquifer, communication with neighboring compart-
ments, and injection/production in neighboring wells.

Desuperposition based on the overall pressure derivative, 𝑚∗, as-
sumes that the well has a stable rate before shut-in. This may be diffi-
cult to achieve, in particular for producing wells experiencing an un-
planned shut-in, and in this case the transients resulting from rate
variations just prior to shut-in, 𝛥𝑝𝑤sim(𝛥𝑡), may be calculated numer-
ically, or based on analytical models. The pressure difference used in
the analysis is then

𝛥𝑝ex(𝛥𝑡) = 𝑝𝑤(𝛥𝑡) − 𝑝𝑤(𝑇) + 𝛥𝑝𝑤sim(𝛥𝑡) − 𝑚∗𝛥𝑡 , (4.40)

where𝑚∗ is the overall pressure trendmeasured by downhole gauges.

4.7 Similarity between drawdown and buildup responses

In this section we will discuss in what sense the pressure responses in
buildup aremirror images of the corresponding drawdown responses,
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When analyzed in terms of Agar-
wal time, the radial infinite acting
transient buildup is equivalent to
drawdown.

Horner analysis may be extended to
long production periods.

and how this enables the use of drawdown analysis tools, such as the
semilog plot, for buildup analysis.

For short production and buildup (infinitely acting) the buildup re-
sponse is (see Eq. (4.17))

𝑝𝑤(𝛥𝑡) − 𝑝𝑤(𝑡𝑝) =
𝑄𝜇
4𝜋𝑘ℎ [ln (

4𝜂
𝑟2𝑤

𝑡𝑝𝛥𝑡
𝑡𝑝 + 𝛥𝑡) − 𝛾 + 2𝑆] , (4.41)

and the corresponding drawdown test response is (see Eq. (3.57))

𝑝𝑤(𝑡) − 𝑝𝑤(0) = − 𝑄𝜇
4𝜋𝑘ℎ [ln (

4𝜂
𝑟2𝑤
𝑡) − 𝛾 + 2𝑆] . (4.42)

Thus, buildup is themirror image of drawdownwhen expressed in terms
of an effective time (Agarwal time)

𝑡𝑒 =
𝑡𝑝𝛥𝑡
𝑡𝑝 + 𝛥𝑡 . (4.43)

For a long production period and short buildup the buildup response
is (see Eq. (4.30))

𝑝𝑤(𝛥𝑡) − 𝑝𝑤(𝑡𝑝) =
𝑄𝜇
4𝜋𝑘ℎ [ln (

4𝜂
𝑟2𝑤
𝛥𝑡) − 𝛾 + 2𝑆] . (4.44)

And the corresponding short time drawdown test response is again
given by Eq. (4.42). Thus, that in this case buildup is the mirror image
of drawdown in terms of real time, but also with respect to Agarwal
time, since

𝑡𝑒 =
𝑡𝑝𝛥𝑡
𝑡𝑝 + 𝛥𝑡 = 𝛥𝑡 1

1 + 𝛥𝑡
𝑡𝑝

≈ 𝛥𝑡 , (4.45)

in this case. We may conclude that, at least approximately, the radial
transient buildup is the mirror image of drawdown, Irrespective of
the length of the production time, 𝑡𝑝, provided that drawdown time 𝑡
is replaced by the Agarwal time.

𝑡𝑒 =
𝑡𝑝𝛥𝑡
𝑡𝑝 + 𝛥𝑡 . (4.46)

Based on this we also see that approximately we may employ an ex-
tended Horner analysis to long production periods where the infinite
acting solution is not applicable.

The Agarwal time transformation includes wellbore storage and
skin effects, but non radial flow data (as in wells with hydraulic frac-
tures) will not be transformed accurately. Similarly, late time behav-
ior for drawdown and buildup are not similar under the transforma-
tion.

As will be show in the next two chapters, the late time behavior
of a well test is used to infer information related to reservoir bound-
aries and heterogeneities. The theory and procedures will be dis-
cussed in terms of drawdown. Since the Agarwal time transformation
is not applicable, some sort of desuperposition is needed if buildup
data is to be used in this context. Examples of desuperposition is
Eqs. (4.39) and (4.40). The most general form of desuperposition is a
method called deconvolution, which is discussed in a separate chap-
ter (page 139). Correct desuperposition includes all effects, so that
the late time behavior for drawdown and buildup are similar.





5
Finite reservoir

Real reservoirs are not infinite, and in this chapter we will discuss
how the finite size of the reservoir influence a well test and which
properties may be inferred. We will also discuss how well testing may
be used in reservoir monitoring by giving information related to the
pressure in the reservoir at the time of the test.

5.1 Semi steady state

Late in a drawdown test, the flow reaches semi steady state in a closed
reservoir. At semi steady state the pressure profile is constant over
time, while the average reservoir pressure falls due to production.
The situation is illustrated in Fig. 5.1

.

Figure 5.1: Semi steady state pressure
profile

In the following we will discuss semi steady state flow in a cylin-
drical reservoir. First, the steady state profile will be derived, and by
adding the condition that the average pressure falls linearly with time
we will derive the equation for well pressure as a function of time.

The criterion for semi steady state is that pressure falls with a con-
stant rate in the whole drainage area. This gives the following equa-
tion for the pressure profile, 𝑝(𝑟) (see Eqs. (2.19) and (2.28)):

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑝
𝜕𝑟 ) =

1
𝜂
𝜕𝑝
𝜕𝑡 = 𝐶1 . (5.1)

The inner boundary condition on Eq. (5.1) is given by Darcys law,

𝑄
ℎ2𝜋𝑟 =

𝑘
𝜇 (

𝜕𝑝
𝜕𝑟 ) , (5.2)
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Pressure profile

Get average pressure by integrating the
pressure profile.

1 For the integration yielding Eq. (5.12)
we use that

∫𝑟 ln ( 𝑟
𝑟𝑤

) 𝑑𝑟 = 𝑟2 ( 12 ln ( 𝑟
𝑟𝑤

) − 1
4)

that is
(𝑟𝜕𝑝𝜕𝑟 )𝑟=𝑟𝑤

= 𝑄𝜇
2𝜋𝑘ℎ = 𝑝𝑐 , (5.3)

while the outer boundary condition is no flow, which using Darcys law
transform to zero pressure gradient:

(𝑟𝜕𝑝𝜕𝑟 )𝑟=𝑟𝑜
= 0 ⇒ (𝜕𝑝𝜕𝑟 )𝑟=𝑟𝑜

= 0 , (5.4)

where 𝑟𝑜 is the outer radius of the reservoir.
Integrating Eq. (5.1) with respect to 𝑟 gives

𝑟𝜕𝑝𝜕𝑟 =
𝐶1
2 𝑟

2 + 𝐶2 . (5.5)

We may apply the outer boundary condition (5.4) to to eliminate the
integration constant 𝐶2 from Eq. (5.5) (𝐶2 = − 𝑟2𝑜

2
𝐶1) which gives

𝑟𝜕𝑝𝜕𝑟 =
𝐶1
2 (𝑟2 − 𝑟2𝑜 ) . (5.6)

The constant 𝐶1 is found by applying the inner boundary condi-
tion (5.3) to Eq. (5.6):

𝑝𝑐 = (𝑟𝜕𝑝𝜕𝑟 )𝑟=𝑟𝑤
= 𝐶1

2 (𝑟2𝑤 − 𝑟2𝑜 ) (5.7)

𝐶1 = − 2𝑝𝑐
𝑟2𝑜 − 𝑟2𝑤

≈ −2𝑝𝑐
𝑟2𝑜

. (5.8)

In the last similarity we us that 𝑟𝑜 ≫ 𝑟𝑤, thus 𝑟2𝑜 − 𝑟2𝑤 ≃ 𝑟2𝑜 . Inserting
Eq. (5.8) into Eq. (5.6) gives

𝜕𝑝
𝜕𝑟 = −𝑝𝑐

𝑟2𝑜
(𝑟 − 𝑟2𝑜

𝑟 ) . (5.9)

We may now integrate both sides of Eq. (5.9) from 𝑟𝑤 to 𝑟 to get the
pressure profile:

𝑝(𝑟, 𝑡) − 𝑝𝑤(𝑡) = 𝑝𝑐 (ln (
𝑟
𝑟𝑤
) − 𝑟2 − 𝑟2𝑤

2𝑟2𝑜
) . (5.10)

As long as 𝑟 ≪ 𝑟𝑜 the last term in Eq. (5.10) can be ignored, so the
pressure profile near the well has the familiar general steady state
logarithmic form (2.36).

In a well test we are primarily interested in the well pressure, and
𝑝𝑤 remains an arbitrary integration constant in Eq. (5.10). We may
however integrate the pressure profile over the entire reservoir in or-
der to get an expression for the average reservoir pressure, and by
equating this pressure with the average pressure found by applying
material balance, an expression for well pressure can be found.

The average reservoir pressure is given by the integral

𝑝 = 1
𝜋𝑟2𝑜

∫
𝑟𝑜

𝑟𝑤
2𝜋𝑟𝑝(𝑟) 𝑑𝑟 . (5.11)

Substituting the reservoir pressure profile (5.10) into Eq. (5.11), and
integrating1 gives the average pressure
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Get average pressure from material
balance.

Semi steady state well pressure

Reservoir limit test

Reservoir pore volume

𝑝(𝑡) = 𝑝𝑤(𝑡) + 𝑝𝑐 (ln (
𝑟𝑜
𝑟𝑤
) − 3

4) , (5.12)

where again the condition 𝑟𝑜 ≫ 𝑟𝑤 has been used to eliminate small
terms. Since the compressibility is constant, we may also calculate
the average reservoir pressure from material balance:

𝑝(𝑡) = 𝑝𝑖 −
𝑄

𝑐𝑡𝜙𝑉
𝑡 , (5.13)

where 𝑉 is bulk volume, and 𝑐𝑡 is total compressibility. The average
pressure 𝑝 in the two expressions (Eqs. (5.12) and (5.13)) should be
the same, so we may eliminate it and solve for the semi steady state
well pressure:

𝑝𝑤(𝑡) = 𝑝𝑖 −
𝑄

𝑐𝑡𝜙𝑉
𝑡 − 𝑝𝑐 (ln (

𝑟𝑜
𝑟𝑤
) − 3

4) . (5.14)

The well pressure (5.14) has two contributions: The average reservoir
pressure, which decrease linearly with time, and a geometric correc-
tion, which depend logarithmically on reservoir size. The geomet-
ric correction is determined by the pressure profile and will vary with
reservoir geometry and well placement. Eq. (5.14) for the well pres-
sure is valid for a cylindrical reservoir with a well at the center.

A reservoir limit test is a test that is run for a time long enough for
the test to investigate the whole reservoir (see Eqs. (3.27) and (5.34)).
The purpose of the test is to get information on reservoir size and
shape.

Reservoir pore volume can be estimated from the derivative of
pressure at semi steady state. In semi steady state (Eq. (5.14)) the
derivative of well pressure is

𝑑
𝑑𝑡𝑝𝑤 = − 𝑄

𝑐𝑡𝜙𝑉
, (5.15)

so, if total compressibility is known, the reservoir pore volume is

𝜙𝑉 = − 𝑄
𝑐𝑡

𝑑
𝑑𝑡
𝑝𝑤

. (5.16)

Our Eq. (5.14) is valid for a very special (cylindrical) reservoir never
seen in real life, and we have ignored the effect of skin. We will now
derive a generalization of Eq. (5.14) valid for reservoirs of constant
thickness of any shape. For a cylindrical reservoir the spatial correc-
tion depend on reservoir size through the outer radius 𝑟𝑜. It is not
obvious what the corresponding characteristic length should be in a
reservoir of general shape sowewill use the reservoir area,𝐴, instead:

𝑟𝑜
𝑟𝑤

=
√

𝜋𝑟2𝑜
𝜋𝑟2𝑤

=
√

𝐴
𝜋𝑟2𝑤

. (5.17)

It is most convenient to work with dimensionless variables:

𝑟𝐷 = 1
𝑟𝑤
𝑟 𝑡𝐷 = 𝜂

𝑟2𝑤
𝑡 𝑝𝐷 = 𝑝𝑖 − 𝑝

𝑝𝑐
ℎ𝐷 = 1

𝑟𝑤
ℎ 𝐴𝐷 = 1

𝑟2𝑤
𝐴 𝑉𝐷 = 1

𝑟3𝑤
𝑉

(5.18)
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2 The shape factor 𝐶𝐴 is called the
Dietz shape factor.

General semi steady state well pressure

SPE Metric SI

𝑄 100m3/d 1.16 × 10−3m3/s
ℎ 10m 10m
𝜙 0.2 0.2
𝑐𝑡 2.6 × 10−4 bar−1 2.6 × 10−9 Pa−1

Table 5.1: Basic data for example.

The semi steady state solution for a cylindrical reservoir on dimen-
sionless form is then

𝑝𝐷𝑤 = 2𝜋
𝐴𝐷

𝑡𝐷 + 1
2 (ln (

𝐴𝐷
𝜋 ) − 3

2) . (5.19)

Since the near well pressure profile has the familiar time independent
logarithmic form, the effect of skin can be represented by the dimen-
sionless skin factor. We may also incorporate the effect of reservoir
shape and relative well placement into a dimensionless shape factor,
𝐶𝐴, with a corresponding contribution to the pressure2. Introducing
skin and shape factor, the general semi steady state solution is writ-
ten

𝑝𝐷𝑤 = 2𝜋
𝐴𝐷

𝑡𝐷 + 1
2 (ln (

4𝐴𝐷
𝐶𝐴

) − 𝛾 + 2𝑆) , (5.20)

and we see that the shape factor is defined such that the spatial
pressure correction is similar to the temporal infinitely acting solu-
tion (3.49)

𝑝𝐷𝑤 = 1
2 (ln (4𝑡𝐷) − 𝛾 + 2𝑆) . (5.21)

By comparing Eqs. (5.19) and (5.20), we see that the shape factor for
a cylindrical reservoir with a central well is

𝐶𝐴 = 4𝜋 exp(3/2 − 𝛾) = 31.6… . (5.22)

For any other geometry we have

𝐶𝐴 < 31.6… . (5.23)

5.2 Example

In this example we will estimate the reservoir volume by employing
Eq. (5.16) on a drawdown test. We assume that a vertical well is pro-
duced at a reservoir rate of 100.0m3/d for a prolonged period. The
relevant production data and estimated reservoir and fluid properties
are summarized in Table 5.1.

The plot of the pressure development is shown in Fig. 5.2. We can
then estimate the reservoir volume based on Eq. (5.16). We then need
to estimate the slope of the linear part of the plot.

We observe that the curve is approximately straight between
the times 1 × 107 s and 6 × 107 s. At 1 × 107 s the pressure is
approximately 2.01 × 107 Pa, while the pressure is approximately
1.65 × 107 Pa at time 6 × 107 s. This gives a slope of

𝑑𝑝𝑤
𝑑𝑡 = 1.65 × 107 Pa − 2.01 × 107 Pa

6 × 107 s − 1 × 107 s
= −0.072Pas−1 . (5.24)

Then, employing Eq. (5.16), we get estimate the reservoir pore vol-
ume as

𝜙𝑉 = − 𝑄
𝑐𝑡

𝑑𝑝𝑤
𝑑𝑡

= − 1.16 × 10−3m3/s
2.6 × 10−9 Pa−1 ⋅ −0.072Pas−1

= 6.2 × 106m3 .

(5.25)
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×107 Figure 5.2: The pressure data from the
drawdown test in a plot with Cartesian
scales.

3 Everdingen and Hurst, “The Applica-
tion of the Laplace Transformation to
Flow Problems in Reservoirs.”

Exact expression for the well pressure
in a cylindrical reservoir

With the given porosity, this yields a reservoir volume of 𝑉 =
6.2 × 106m3/0.2 = 3.1 × 107m3. For a cylindrical reservoir, were
𝑉 = 𝜋𝑟2𝑜 ℎ, this corresponds to an outer radius of

𝑟𝑜 =√
𝑉
𝜋ℎ = √

3.1 × 107m3

𝜋10m ≃ 1000m . (5.26)

5.3 Exact solution for cylindrical reservoir

There exist an exact expression for the well pressure in a cylindrical
reservoir.3 That is, a solution to the diffusivity equationwith constant
rate boundary conditions on inner radius 𝑟𝑤

𝜕𝑝
𝜕𝑟
|||𝑟=𝑟𝑤

= 𝑝𝑐
𝑟𝑤

, (5.27)

and no flow on outer radius 𝑟𝑜
𝜕𝑝
𝜕𝑟
|||𝑟=𝑟𝑜

= 0 . (5.28)

The late-time behavior of this solution may be analyzed to get the
semi steady state well pressure (Eq. (5.14)):

Expressed in dimensionless variables (𝑟𝐷𝑜 = 𝑟𝑜/𝑟𝑤 and 𝑡𝐷 = 𝜂𝑡/𝑟2𝑤)
the exact solution for the well pressure 𝑝(𝑟𝑤) when 𝑟𝑜 ≫ 𝑟𝑤 is

𝑝𝑤 = 𝑝𝑖 − 𝑝𝑐 (
2𝑡𝐷
𝑟2𝐷𝑜

+ ln (𝑟𝐷𝑜) −
3
4 + 𝐹(𝑟𝐷𝑜, 𝑡𝐷)) , (5.29)

where

𝐹(𝑟𝐷𝑜, 𝑡𝐷) = 2
∞
∑
𝑛=1

𝐽21 (𝛼𝑛𝑟𝐷𝑜)
𝛼2𝑛(𝐽21 (𝛼𝑛𝑟𝐷𝑜) − 𝐽21 (𝛼𝑛))

𝑒−𝛼2𝑛𝑡𝐷 , (5.30)

and 𝛼𝑛 are roots of the equation

𝐽1(𝛼𝑛𝑟𝐷𝑜)𝑌1(𝛼𝑛) − 𝐽1(𝛼𝑛)𝑌1(𝛼𝑛𝑟𝐷𝑜) = 0 . (5.31)
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The correction to semi steady state fall
off exponentially with time.

0.0 0.2 0.4 0.6 0.8 1.0
𝑟/𝑟𝑜

0.0

0.5

1.0

Figure 5.4: Spatial shape of the three
longest living modes of correction to
SSS solution,

Figure 5.5: Log–log derivative diag-
nostic plot, showing infinite acting and
semi steady state flow regimes.

Inspecting the exact solution (5.29), we see that it is equal to the
semi steady state solution (5.14) plus a time dependent correction, 𝐹.
The correction is a sum over terms (modes) that fall off exponentially
with time, so the late time behavior is described by the semi steady
state solution as derived earlier. The longest living mode has time
dependency exp(−𝛼21𝑡𝐷), where 𝛼1 is the smallest root. In Fig. 5.3 are
plots of the function

𝑓(𝑥) = 𝐽1(𝑥𝑟𝐷𝑜)𝑌1(𝑥) − 𝐽1(𝑥)𝑌1(𝑥𝑟𝐷𝑜) (5.32)

(Eq. (5.31)) for different values of 𝑟𝐷𝑜, and we we see that the smallest
root is

𝛼1 ≈
4
𝑟𝐷𝑜

. (5.33)

The time constant for the longest living mode is thus

3 4 5 6 7 8 9 10
𝑥𝑟𝐷𝑜
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0𝑓
(𝑥
,𝑟 𝐷

𝑜)

𝑟𝐷𝑜
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30.0
50.0
70.0
105

Figure 5.3: The function 𝑓(𝑥) =
𝐽1(𝑥𝑟𝐷𝑜)𝑌1(𝑥) − 𝐽1(𝑥)𝑌1(𝑥𝑟𝐷𝑜) for
different values of 𝑟𝐷𝑜. we see that the
smallest root is 𝛼1 ≈

4
𝑟𝐷𝑜

.

𝑡0 =
𝑟2𝑜
16𝜂 . (5.34)

Note the similarity with “time of investigation” and “radius of inves-
tigation” (Eq. (3.27)).

Figure 5.4 shows the spatial shape of the three longest livingmodes
of the correction to the semi steady state profile. We see that the
sum in Eq. (5.30) is similar to a Fourier expansion, and that the “high
frequency” modes die off first.

5.4 Log–log derivative diagnostic plot

In well test analysis, the log–log plot of the logarithmic derivative, 𝑝′,
versus time, 𝑡, is extensively used for diagnostic purposes. This log–
log derivative diagnostic plot is used in general to find flow regimes,
and it will be discussed andused extensively in the following chapters.
The plot has

ln(𝑝′) = ln ( 𝑑𝑝
𝑑ln(𝑡)) (5.35)

on the 𝑦–axis, and
ln(𝑡)
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𝑑𝑝
𝑑ln(𝑡)

= 𝑡 𝑑𝑝
𝑑𝑡

Figure 5.6: When analyzing a reservoir
limit test a semilog plot (𝑝𝑤 vs. ln(𝑡))
is used to find permeability and skin

Estimating reservoir volume

on the 𝑥–axis. An example diagnostic plot is shown in Fig. 5.5.
Since details and variability are hidden, log–log plots can be de-

ceptive, and it is often said that any data can be fitted to anything on
a log–log plot. However, as will be demonstrated below, this removal
of detail can also be set to good use.

From Eq. (3.58), the infinitely acting transient has the form

𝑝𝑤 = 𝑚 ln(𝑡) + 𝐶 , (5.36)

so the logarithmic derivative is a constant. Thus, the time interval for
infinitely acting flow can be identified as a period with zero slope or
a plateau value. Such a plateau is indicated in Fig. 5.5.

In semi steady state, the well pressure is linear in time (Eq. (5.14)),

𝑝𝑤 = 𝑚𝑡 + 𝐶 , (5.37)

so the logarithmic derivative is

ln(𝑝′) = ln ( 𝑑𝑝
𝑑ln(𝑡)) = ln (𝑡𝑑𝑝𝑑𝑡 ) (5.38)

= ln (𝑚𝑡) = ln(𝑡) + ln(𝑚) , (5.39)

and the plot (ln(𝑝′) vs. ln(𝑡)) has unit slope. Thus, the the time inter-
val for semi steady state flow can be can be identified as a period with
unit slope. Such a unit slope period is indicated in Fig. 5.5.

In general, if a flow regime is characterized by by an exponent, 𝛼,

𝑝𝑤 = 𝑚𝑡𝛼 + 𝐶 , (5.40)

we have
ln(𝑝′) = 𝛼 ln(𝑡) + ln(𝛼𝑚) . (5.41)

Thus, the time interval for a flow regime with characteristic exponent
𝛼 can be identified as a period on the log–log diagnostic plot with
slope = 𝛼.

If we ignore the early time effects of wellbore storage and skin, the
reservoir limit test has two flow regimes: infinitely acting radial flow
and semi steady state flow. The first will be characterized by a time
interval with zero slope, and the second will be characterized by an
interval with unit slope. This is illustrated in Fig. 5.5.

As has been discussed in the previous chapters, permeability and
skin are estimated based on fitting a straight line to the infinitely act-
ing flow period on a a semilog plot (𝑝𝑤 vs. ln(𝑡)) as shown in Fig. 5.6.

Reservoir pore volume and shape factor is found from the semi
steady state flow period using a Cartesian plot (𝑝𝑤 vs. 𝑡). This is il-
lustrated in Fig. 5.7. If the straight line fit is

𝑝𝑤 = 𝑝0 −𝑚𝑡 , (5.42)

then the reservoir volume is estimated from the slope𝑚:

𝜙𝑉 = − 𝑄
𝑐𝑡𝑚

. (5.43)
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Figure 5.7: A cartesian plot (𝑝𝑤 vs. 𝑡)
is used to find reservoir volume and
shape factor

Estimating the shape factor

In a reservoir with constant thickness, the reservoir area is

𝐴 = 𝑉
ℎ , (5.44)

so, if permeability and skin is known, the Dietz shape factor may be
found by extrapolating the straight line (Eq. (5.42)) to 𝑡 = 0 and solv-
ing Eq. (5.20) for 𝐶𝐴:

ln(𝐶𝐴) = ln (4𝐴
𝑟2𝑤
) − 𝛾 + 2𝑆 − 2𝑝𝑖 − 𝑝0

𝑝𝑐
. (5.45)

5.5 Reservoir monitoring with buildup tests

In this section wewill show that the buildup test can be used formon-
itoring reservoir pressure by employing an extended version of the
Horner analysis. In the strict Horner analysis (page 40), valid for short
production times, 𝑡𝑝, the extrapolated pressure at

𝑡𝑝+𝛥𝑡
𝛥𝑡

= 1, 𝑝∗, cor-
responds to the initial pressure. Due to the short production time,
the initial pressure is approximately equal the average reservoir pres-
sure. For longer production times, 𝑝∗ is no longer equal to the average
reservoir pressure, but the straight line extrapolation can still be used
for estimating this pressure.

There are two methods for estimating the average reservoir pres-
sure for buildup tests: In the Ramey–Cobb method, which is appli-
cable for long production times (semi steady state), a time is found
where the pressure on the straight line correspond to the average
pressure, and in the Matthews-Brons-Hazebroek method, which is
universally applicable, a correction to 𝑝∗ is found. Both methods re-
quire knowledge of the reservoir shape.

We have seen (page 48) that irrespective of the length of the pro-
duction time, 𝑡𝑝, the radial transient buildup is approximately the
mirror image of drawdown provided that drawdown time 𝑡 is replaced
by the effective (Agarwal) time

𝑡𝑒 =
𝑡𝑝𝛥𝑡
𝑡𝑝 + 𝛥𝑡 =

𝑡𝑝
𝜏 . (5.46)

Here 𝜏 = (𝑡𝑝 +𝛥𝑡)/𝛥𝑡 is the Horner time. Remember that infinite time
𝛥𝑡 → ∞ yields 𝜏 → 1, thus ln(𝜏) → 0.
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Using dimensionless variables, the buildup response (4.17) is then

𝑝𝐷𝑤(𝑡𝑝) − 𝑝𝐷𝑤(𝑡𝑝 + 𝛥𝑡) = 1
2 (ln(4𝑡𝐷𝑝) − ln(𝜏) − 𝛾 + 2𝑆) . (5.47)

This implies that the Horner analysis can be extended to long pro-
duction periods to get estimates for permeability (from the slope) and
skin as shown in Fig. 5.8. Permeability is estimated from the slope,𝑚:

Figure 5.8: Extending the Horner anal-
ysis. Note that the x-axis is reversed
in this plot, this is often the case for
Horner plots as it makes time run from
left to right.

𝑘 = 𝑄𝜇
4𝜋ℎ

1
𝑚 . (5.48)

Extrapolation of the straight line to 𝜏 = 1 defines the pressure 𝑝∗.
And, with known permeability, skin can be found using pressure dif-
ference at any point on the straight line. If we use the extrapolated
pressure the expression is

𝑆 = 1
2 [

𝑝∗ − 𝑝(𝑡𝑝)
𝑚 − ln(4𝑡𝐷𝑝) + 𝛾] . (5.49)

We will now derive the Ramey–Cobb method for estimating aver-
age reservoir pressure: First, remember from Eq. (5.13) that 𝑝(𝑡) =
𝑝𝑖−𝑄𝑡/(𝑐𝑡𝜙𝑉). Then the dimensionless average reservoir pressure 𝑝𝐷
is

𝑝𝐷(𝑡) =
𝑝𝑖 − 𝑝(𝑡)

𝑝𝑐
= 𝑄
𝑐𝑡𝜙𝑉

2𝜋𝑘ℎ
𝑄𝜇 𝑡 = 2𝜋𝜂

𝐴 𝑡 = 2𝜋
𝐴𝐷

𝑡𝐷 (5.50)

If flow is in semi-steady-state at end of the production period (see
Eq. (5.20)) we have

𝑝𝐷𝑤(𝑡𝑝) =
2𝜋
𝐴𝐷

𝑡𝐷𝑝 +
1
2 [ln (

4𝐴𝐷
𝐶𝐴

) − 𝛾 + 2𝑆] (5.51)

= 𝑝𝐷(𝑡𝑝) +
1
2 [ln (

4𝐴𝐷
𝐶𝐴

) − 𝛾 + 2𝑆] . (5.52)

Due to shut in after 𝑡𝑝, we have 𝑝𝐷(𝑡) = 𝑝𝐷(𝑡𝑝) for 𝑡 > 𝑡𝑝, and can thus
write just 𝑝𝐷 for all 𝑡 > 𝑡𝑝. If we insert Eq. (5.52) into the expression
for the linear region of the Horner plot (Eq. (5.47)) and solve for 𝑝𝐷
we get

𝑝𝐷 = 𝑝𝐷𝑤(𝑡𝑝 + 𝛥𝑡) − 1
2 ln (

𝐴𝐷
𝐶𝐴𝑡𝐷𝑝

𝜏) (5.53)
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We see that by selecting a time such that

𝜏 = 𝐶𝐴
𝑡𝐷𝑝
𝐴𝐷

= 𝐶𝐴𝑡𝐷𝑎 (5.54)

the logarithmic term vanish and the corresponding pressure is the av-
erage reservoir pressure.

pr
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Figure 5.9: Ramey–Cobb method: A
time is selected on the straight line
such that the corresponding pressure is
𝑝.

The Ramey–Cobbmethod is illustrated in Fig. 5.9, and can be sum-
marized as follows: First fit a straight line to the infinitely acting ra-
dial transient part of the Horner plot

𝑝 = 𝑝∗ −𝑚 ln(𝜏) .

Then, using theDietz shape factor that correspond to the actual reser-
voir shape, determine

𝜏∗ = 𝐶𝐴
𝐴𝐷

𝑡𝐷𝑝 . (5.55)

The corresponding pressure on the straight line is the average reser-
voir pressure:

𝑝(𝜏∗) = 𝑝∗ −𝑚 ln(𝜏∗) = 𝑝 . (5.56)

Note that in order to apply this method, permeability, and reservoir
area and shape, must be known from a separate analysis.

The Ramey–Cobb method is only applicable if the reservoir has
reached semi steady state before shut in. We see from Eq. (5.56) that
the Ramey–Cobb method alternatively may be expressed as a correc-
tion to 𝑝∗, and in the Matthews–Brons–Hazebroek (MBH) method,
an expression for this correction is sought that is valid also for pro-
duction times shorter than the time needed to reach steady state. A
general explicit expression for the correction does not exist, but if
the reservoir shape and area is known, the correction can be found
by solving drawdown–buildup in dimensionless form for a given ge-
ometry. The correction has been tabulated for a number of simple ge-
ometries, and may be found by solving the flow numerically for more
complex geometries. Fig. 5.10 shows four examples. The correction is
a function of dimensionless time and area through the time variable
𝑡𝐷𝑎 =

𝑡𝐷𝑝

𝐴𝐷
.
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Figure 5.10: Matthews-Brons-
Hazebroek correction. (© SPE, 1977,
after Earlougher, R. Advances in Well
Test Analysis)

MBH correction for large 𝑡𝑝 is a func-
tion of 𝐶𝐴

4 In the paper where the Dietz shape
factor were first introduced, it was
actually defined from Eq. (5.57).

For long production times: use 𝑡𝑝 =
𝑡SSS.

Since both the Ramey–Cobb and theMBHmethod can be expressed
as a correction to the extrapolated pressure, there should be a connec-
tion between the two. We see from Fig. 5.10 that the MBH correction
is linear in ln(𝑡𝐷𝑎) for large production times. Large times correspond
to semi steady state, which iswhere theRamey–Cobbmethod is appli-
cable, and we see from Eqs. (5.55) and (5.56) that this linear behavior
is consistent when the MBH correction for large 𝑡𝑝 is

𝐹 = 1
2 ln (

𝐶𝐴
𝐴𝐷

𝑡𝐷𝑝)

= 1
2 ln (𝐶𝐴) +

1
2 ln (

𝑡𝐷𝑝
𝐴𝐷

)
(5.57)

We see from Eq. (5.57) that all MBH correction curves have the same
slope (1/2), and that the offset is half the logarithm of the Dietz shape
factor, 𝐶𝐴4.

The Horner analysis is based on a constant production rate over a
certain time, and all results are expressed in terms of this production
time 𝑡𝑝. For cases where the production has been varying, we have
seen earlier that we may use an effective production time (Eq. (4.20))
instead, as long as there is a stable period just before shut in. Another
complication is that for long production times we will in Eqs. (5.49)
and (5.57) need to subtract two large numbers; this will introduce an
increasingly large numeric error for increasing 𝑡𝑝. Luckily, it can be
shown that for times larger than the time needed to reach semi steady
state, 𝑡SSS, the results are independent of the choice of 𝑡𝑝 as long as
𝑡𝑝 ≥ 𝑡SSS. This is due to the fact that 𝑝∗ depends linearly on the choice
of 𝑡𝑝 when 𝛥𝑡 ≪ 𝑡𝑝. We should therefore preferably use 𝑡𝑝 = 𝑡SSS
whenever the production time is longer than the time to reach semi
steady state.

5.6 Drainage areas

In our analysis we have assumed that there is only one well in the
reservoir, and the question of whether any of this is applicable to sit-
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Figure 5.11: Example of streamline
pattern that partition the reservoir into
drainage areas. There is one drainage
area for each producer.

5 Conditioning of reservoir models
to time dependent data, such as
measured pressure, is often referred to
as “history matching”.

6 D. W. Peaceman. “Interpretation of
Well-Block Pressures in Numerical
Reservoir Simulation.” In: Society of
Petroleum Engineers Journal 18.03 (June
1978), pp. 183–194. DOI : 10.2118/
6893-PA.

uations with more than one well obviously arises. The answer to this
lies partly in the concept of drainage areas: A well test in a well in a
multi well reservoir can often be analyzed in terms of a single well in
a reservoir shaped like the wells drainage area.

In general each wells drainage area is defined in terms of stream-
lines. The streamlines are defined by the fluid flow vectors, and are
coupled to the pressure gradients via Darcys law. The streamlines end
in wells, and space is divided into regions where flow is towards dif-
ferent wells. These regions are called drainage areas, and in general
the size and shape of these areas change over time. Each producer will
define its own drainage area, while injectors may divide its flow be-
tween several producers, and a producers drainage area may contain
(parts of) several injectors.

In a reservoir with only producers producing at constant rates, a
semi steady state develops where drainage areas are constant in time,
and the pore volume of each area is proportional to the production
rate. Each drainage area has the same semi steady state pressure pro-
file, and average pressure, as a corresponding single well reservoir
with no-flow boundaries. In this case a buildup test can be analyzed
using the Horner plot. The calculation of average pressure should
be based on the shape and area of the drainage area at shut in, and
the resulting pressure estimate will be an average of pressure in the
drainage area.

Note that the drainage area concept has limited applicability, and
that in general the analysis of a build upwell test in amulti well reser-
voir is best performed in terms of some sort of desuperposition (see
page 47).

5.7 Reservoir pressure vs. local pressure

The MBH and Ramey–Cobb methods provide estimates for average
pressure in a reservoir region or drainage area. In terms of condition-
ing reservoir models to monitoring data5, this may actually not be
what is most useful. The two methods also require knowledge of the
reservoir shape, which sometimes is among the unknown reservoir
properties themonitoring data is supposed to contribute in determin-
ing. For the conditioning of reservoir models the local pressure in the
near well region may be more relevant. The corresponding measure-
ment is the well pressure at a fixed time after shut-in This measure-
ment is often referred to as “one hour shut-in pressure”, but the actual
relevant time does depend on permeability (radius of investigation).

For the conditioning of reservoir models the local pressure near
the well is most relevant. In a reservoir simulation model pressure is
defined in grid-blocks, and flowing pressure near a well is represented
by the pressure in the block where the well is perforated. This grid-
block pressure is equal to the pressure at Peaceman equivalent well-
block radius6

𝑟𝑒 ≈ 0.2𝐿 , (5.58)

https://doi.org/10.2118/6893-PA
https://doi.org/10.2118/6893-PA
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Time at which shut-in pressure is equal
to flowing grid-block pressure.

where 𝐿 is the linear block size. The concept of an equivalent radius
is illustrated in Fig. 5.12: The flow into a grid block with a well is

Figure 5.12: The Peaceman equivalent
well-block radius

determined by the pressure difference between anupstreamblock and
the grid-block pressure. This is a linear pressure profile, while the real
profile towards the well is a logarithmic singularity. As a result, well
pressure is lower thanwell-grid-block pressure, and the distance from
the well at which reservoir pressure is equal to grid-block pressure is
the equivalent well-block radius.

What is the time it takes for well pressure to reach flowing pres-
sure at Peaceman equivalent well-block radius 𝑟𝑒 ≈ 0.2𝐿? The flowing
pressure at 𝑟𝑒 is given by the steady state profile (2.40)

𝑝(𝑟𝑒, 𝑡) = 𝑝𝑤(𝑡) + 𝑝𝑐𝑆 + 𝑝𝑐 ln (
𝑟𝑒
𝑟𝑤
) , (5.59)

and the shut-in well pressure at time 𝑡 + 𝛥𝑡 is (MDH approximation,
Eq. (4.30))

𝑝𝑤(𝛥𝑡) = 𝑝𝑤(𝑡) +
𝑝𝑐
2 [ln (4𝜂𝛥𝑡

𝑟2𝑤
) − 𝛾 + 2𝑆] . (5.60)

By combining Eq. (5.59) and (5.60), and solving for 𝛥𝑡 we see that the
time after shut in at which the well block pressure es equal to flowing
grid block pressure is

𝛥𝑡 = 𝑒𝛾 𝑟
2
𝑒
4𝜂 ≈ 0.018𝐿

2

𝜂 . (5.61)

This is the time when shut in pressure should be measured so that it
can be compared with simulated grid block pressure for conditioning.





Figure 6.1: Pressure signal reflected at
reservoir boundary

6
Reservoir boundaries

In this chapter we will discuss how well testing can detect reservoir
boundaries and heterogeneities.

As shown in Fig. 6.1, pressure signals are reflected at reservoir
boundaries, and these reflections can, when measured at the well,
be used to infer quantities such as distance to barriers and reservoir
shape.

Examples of situations where well test data can offer valuable in-
formation are shown in Fig. 6.2. The well test data can be analyzed
quantitatively to get estimates for the distance to reservoir bound-
aries, the distance to and the strength of an aquifer, the distance to a
gas cap, the distance to an advancing water front, and the shape and
size of sand bodies.

Figure 6.2: Examples of boundary like
reservoir features that may be probed
in a well test: A fault (top), a water
injection front (bottom left), and shape
of sand bodies (bottom right)

The data can also give qualitative information relating to the na-
ture of the reservoir and the flow in the near well region. For the latter
purpose, the derivative diagnostic plot briefly introduced on page 56
is particularly useful, and several examples of its use will be shown.

6.1 Well close to a linear boundary

The pressure response in a well close to linear boundary can be found
using superposition in space. Themethod is called the method of im-
ages, since the boundary condition at a barrier or reservoir boundary
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Figure 6.5: A well close to a linear
boundary, modelled using an image
well on the other side of the boundary

may be satisfied by placing imaginary image wells outside the reser-
voir area as shown in Fig. 6.3. The sum of the unconstrained pressure

Figure 6.3: Method of images: Imag-
inary image wells are placed outside
the reservoir in order to satisfy the
boundary conditions.

field from the real well and the image wells should satisfy the bound-
ary condition, and as shown in Fig. 6.4; the no-flow boundary condi-
tion is obtained by placing an image well with the same rate, while a

Figure 6.4: Method of images for no–
flow and constant–pressure boundary
condition. For the red and yellow
pressure curves, their difference to the
initial pressure are given by the sum
of the difference between the dashed
curves and the initial pressure.

constant pressure boundary condition is obtained by placing an image
well with opposite rate.

The pressure response in a well close to a single linear boundary,
such as a sealing fault, can be derived by the method of images: The
boundary condition is satisfied by placing an imagewell with the same
rate on the other side of the boundary as shown in Fig. 6.5.

The well pressure in a constant rate drawdown test is the sum of
two infinitely acting terms, one from the real well, and another from
the image well. We will ignore the short time effects of wellbore stor-
age and skin, so we can use the logarithmic approximation for the real
well, as given by Eq. (3.29):

𝑝𝑖 − 𝑝𝑤(𝑡) =
𝑝𝑐
2 (ln (4𝜂 𝑡

𝑟2𝑤
) − 𝛾 + 2𝑆) . (6.1)

The distance to the image well is large compared to the well radius,
so this contribution is given by the exponential integral at all times,
as in Eq. (3.18):

𝑝𝑖 − 𝑝(𝑟, 𝑡) = 1
2𝑝𝑐 E1 (

1
4𝜂

𝑟2
𝑡 ) . (6.2)

For radius 𝑟 = 2𝐿, this gives:

𝑝𝑖 − 𝑝(2𝐿, 𝑡) = 1
2𝑝𝑐 E1 (

1
𝜂
𝐿2
𝑡 ) . (6.3)

Employing the superposition principle in space to add the pressure
equations (6.1) and (6.3), we obtain the well pressure as:

𝑝𝑤(𝑡) = 𝑝𝑖 −
𝑝𝑐
2 [(ln (4𝜂

𝑟2𝑤
𝑡) + 2𝑆 − 𝛾) + E1 (

𝐿2
𝜂𝑡 )] . (6.4)
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A fault manifests itself as a doubling of
slope on a semilog plot.

Figure 6.6: The distance to the fault
can be found from the time of crossing
of the two fitted straight lines

Figure 6.7: A well in a corner, and the
corresponding image wells

Note that the skin simply adds an extra contribution to the well pres-
sure, so there is no skin contribution from the image well. We may
write Eq. (6.4) in dimensionless form:

𝑝𝐷(𝑡𝐷, 𝐿𝐷) =
1
2 [ln (4𝑡𝐷) − 𝛾 + 2𝑆 + E1 (

𝐿2𝐷
𝑡𝐷
)] . (6.5)

When 𝑡𝐷 → 0, then 𝐿2𝐷/𝑡𝐷 → ∞, so E1(𝐿2𝐷/𝑡𝐷) → 0. This reflects
that at early times the reflected signal has not reached the well, thus
the exponential integral contribution is zero:

𝑝𝐷(𝑡𝐷, 𝐿𝐷) =
1
2 (ln (4𝑡𝐷) − 𝛾 + 2𝑆) , (6.6)

which will give a slope of half when plotting 𝑝𝐷 and 𝑡𝐷 on a semi-log
plot.

At late times, when the reflection has passed the well, the expo-
nential integral may be approximated by a logarithm:

𝑝𝐷(𝑡𝐷, 𝐿𝐷) =
1
2 [(ln (4𝑡𝐷) − 𝛾 + 2𝑆) + (ln ( 𝑡𝐷

𝐿2𝐷
) − 𝛾)]

= ln ( 2
𝐿𝐷

𝑡𝐷) − 𝛾 + 𝑆 . (6.7)

We observe that this gives a slope of half when plotting 𝑝𝐷 and 𝑡𝐷 on
a semi-log plot. The fault will therefore manifest itself as a doubling
of slope on a semilog plot, going from a slope of half at early times to
a slope of 1 at later times. Note that if the fault is very close to bound-
ary, the line with the first slope will be hidden by wellbore and near
wellbore effects on one side and the transition to the second slope on
the other, so that we will only see a single straight line. This may the
be wrongly be interpreted as a reduced permeability.

As illustrated in Fig. 6.6, the distance to the fault can be found
from the time of crossing of the two fitted straight lines (Eqs. (6.6)
and (6.7)):

1
2 ln (4𝑡𝐷𝑥) −

1
2𝛾 = ln ( 2

𝐿𝐷
𝑡𝐷𝑥) − 𝛾 . (6.8)

Solving Eq. (6.8) for 𝐿 gives

𝐿𝐷 = 𝑒−
𝛾
2√𝑡𝐷𝑥 , or 𝐿 = 0.749

√
𝑘𝑡𝑥
𝜇𝜙𝑐𝑡

(6.9)

The pressure response in a well close to a corner can also be solved
in terms of image wells, as shown in Fig. 6.7.

In this case three image wells are needed to satisfy the no-flow
boundary conditions along the two reservoir walls, and the expres-
sion for well pressure has four contributions:

𝑝𝐷(𝑡𝐷, 𝐿𝐷1, 𝐿𝐷2) =
1
2[ (ln (4𝑡𝐷) − 𝛾 + 2𝑆)

+ E1 (
𝐿2𝐷1
𝑡𝐷

) + E1 (
𝐿2𝐷2
𝑡𝐷

) + E1 (
𝐿2𝐷1 + 𝐿2𝐷2

𝑡𝐷
) ]

.

(6.10)
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1 In general, if the corner has angle 𝜃
the slope will increase by a factor 2𝜋

𝜃
.

Identifying flow regimes

At early times, the contribution from the image wells are again
zero, and the well pressure is given by Eq. (6.6), while at late times
the exponential integrals may be approximated by logarithms:

𝑝𝐷(𝑡𝐷, 𝐿𝐷1, 𝐿𝐷2) = 2 ln(𝑡𝐷) + ln( 2

𝐿𝐷1𝐿𝐷2√𝐿2𝐷1 + 𝐿2𝐷2
) − 2𝛾 + 𝑆 .

(6.11)
Thus, the straight angled corner will manifest itself as a four times
increase of the slope on a semilog plot1.

Similar to the situation with a single fault, if the well is close to the
corner we may only see a single straight line, and this can wrongly
be interpreted as a reduced permeability. On the other hand, if the
distance to the two reservoir walls are well separated 𝐿2 ≫ 𝐿1, we will
see three straight lines: The first representing the infinitely acting
radial flow, a second with double slope representing the semi radial
flow due to the reflection from the nearest wall, and the third with
four times the slope.

6.2 Flow regimes – Diagnostic plots

Until now we have seen two fundamental flow types or flow regimes:
radial flow, which is characterized by a linear slope on a semilog plot
and a constant value on the log–log derivative plot, and depletion,
which is characterized by a unit slope on the log–log derivative plot.
The unit slope is seen early in the test when all production is from
the wellbore (wellbore storage effect, see Eq. (3.69)), and late for semi
steady state flow (Eq. (5.20)).

In this sectionwewill discuss various flow regimes that can be seen
in awell test, and their signatures. A constant ratewell test probes the
volume around the well at an increasing distance from the well, con-
sistentwith the concept of a radius of investigation, and the derivative
of the pressure response reflects the properties at the pressure front.
The test probes the volume in the transition zone between the essen-
tially semi steady state region closer to the well and the undisturbed
outer regions, as illustrated in Fig. 3.6 on page 29. Thus, the early
part of the test reflects properties and front movement close to the
well, while the later parts reflect front propagation and properties at
increasingly larger distances.

As illustrated in Fig. 6.8, the time periods of a well test are typically
characterized as: “early time”, dominated by wellbore effects, skin,
and near well heterogeneities, “middle time”, where the flow has not
yet seen the whole reservoir, and “late time”, where flow is boundary
dominated or in semi steady state.

Flow regimes are identified using the log–log derivative diagnos-
tics plot introduced on page 56. This plot has

ln(𝑝′) = ln ( 𝑑
𝑑 ln(𝑡)𝑝)

on the 𝑦–axis, and ln(𝑡) on the 𝑥–axis. If the pressure response have
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Figure 6.8: Flow periods on a log–log
plot

the form 𝑝𝑤 = 𝑎 − 𝑏𝑡𝛼 then we have

ln(𝑝′) = ln(𝑏𝛼) + 𝛼 ln(𝑡) .

Thus, the time interval for a flow regime with characteristic exponent
𝛼 can be identified as a period on the log–log diagnostic plot with
slope = 𝛼. We will see below that the characteristic exponent depend
on the dimension in which the pressure front is propagating.

6.2.1 Spherical flow

When the pressure front propagates in three dimensions we have
spherical flow. Two examples of a situation where we may see a flow
period with a spherical flow regime is shown in Fig. 6.9: If the well

Figure 6.9: Examples of spherical flow
due to an incompletely perforated
reservoir zone

is only partially perforated in a reservoir zone, there will be a period
where the pressure front propagates in a spherical or hemispherical
pattern until it reaches the top and bottom of the zone.

For spherical flow we have

𝑝(𝑡) ∝ 1
√𝑡

= 𝑡−
1
2 , (6.12)

which gives

ln ( 𝑑
𝑑 ln(𝑡)𝑝) = −12 ln (𝑡) + 𝐶 , (6.13)

thus the slope on the derivative plot will be −1/2.
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6.2.2 Radial flow

We have seen earlier that for radial flow, where the pressure front
moves in a 2-dimensional radial pattern, the pressure has a charac-
teristic logarithmic time behavior:

𝑝(𝑡) = 𝑎 + 𝑚 ln(𝑡) , (6.14)

which gives the derivative

𝑑
𝑑 ln(𝑡)𝑝 = 𝑚 . (6.15)

The plateau height corresponds to the constant slope on a semi-log
plot, and depends on permeability and geometry.

Several examples of radial flow are shown in Fig. 6.10.

Figure 6.10: Examples of radial flow

We have seen the signature of a well test with a single radial flow
period several times already, and Fig. 6.11 illustrates how this signa-
ture is affected by permeability, while Fig. 6.12 illustrates how this
signature is affected by skin.
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Figure 6.11: How permeability effects
the radial flow diagnostic plot.

6.2.3 Linear flow

When the pressure front propagates in an essentially one dimensional
pattern we have linear flow. Examples of situations with linear flow
periods are flow in narrow, channel shaped, reservoirs (see page 72),
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Figure 6.12: How skin effects the radial
flow diagnostic plot.

and flow in hydraulically induced fractures (see page 87). Channel
flow occur at middle to late times, while early time linear flow is in-
dicative of fractures.

Linear flow has the following characteristic (see page 92):

𝑝(𝑡) ∝ √𝑡 = 𝑡1/2 , (6.16)

which give the derivative

ln ( 𝑑
𝑑 ln(𝑡)𝑝) =

1
2 ln (𝑡) + 𝐶 , (6.17)

thus this flow regime is characterized by a slope of a half on the deriva-
tive plot. Figure 6.13 illustrates how channel width influence the
corresponding derivative plots. This will be discussed in more detail
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Figure 6.13: Derivative plots for
channels width different width.

later.

6.2.4 Summary of flow regimes

Each flow regime is identified by a time period with a characteristic
slope on the log–log derivative diagnostic plot. Between each pe-
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riod there will be a transition period, typically covering more than
a decade. Two subsequent flow regimes may be of different or similar
type. The sequence of flow periods is called a fingerprint, and gal-
leries of these are called fingerprint libraries. An example of part of
such a library is shown in Fig. 6.14.

Figure 6.14: Examples of fingerprints
from a fingerprint library.There is a close relation between the dimension in which the pres-

sure front spreads and the slope in the log–log derivative diagnostic
plot over the corresponding time period: If the front spreads in 𝑑 di-
mensions, then the slope will be 1−𝑑/2. This relationship is summa-
rized in Table 6.1.

Flow regime dimensionality slope

𝑑 1 − 𝑑/2

Spherical 3 − 1
2

Radial 2 0
Bilinear 1½ 1

4
Finite-conductive fractures

Linear 1 1
2

Depletion 0 1

Table 6.1: The connection between
flow dimensionality and slope in the
log–log derivative diagnostic plot.

6.3 Channel sands and narrow fault blocks

In this section we will investigate systems with middle-time linear
flow, that is systems with channelized flow. Examples of such reser-
voirs are systems of tilted fault blocks that form narrow rectangular
compartments as illustrated in Fig. 6.15. Another example are sys-
tems of stacked channels forming channel belts in a low-permeable
background. These channels form narrow compartments of sand as
illustrated in Fig. 6.16.
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Figure 6.15: A system of tilted fault
blocks forming narrow rectangular
compartments.

Figure 6.16: Stacked channel sands in
a low-permeable background. Narrow
compartments of sand are formed at
low sand/background ratios.

Figure 6.17: A well between to parallel
boundaries and its images

Figure 6.18: Linear flow into a well
in a channel. The convergence of
streamlines towards the well result in
an increased pressure drop compared
to fully linear flow.

2 M. S. Hantush and C. E. Jacob. “Non-
steady green’s functions for an infi-
nite strip of leaky aquifer.” In: Eos,
Transactions American Geophysical
Union 36.1 (1955), pp. 101–112. DOI :
10.1029/TR036i001p00101.
3 Madhi S Hantush. “Hydraulics of
wells.” In: Advances in hydroscience 1
(1964), pp. 281–432.

A system with two parallel boundaries can be analyzed using su-
perposition. As shown in Fig. 6.17 an infinite number of images are
needed in this case. The first flow regime, valid for times where the
radius of investigation is shorter than the distance to the nearest wall,
is radial flow:

𝑝𝐷 = 1
2 [ln(4𝑡𝐷) − 𝛾 + 2𝑆] . (6.18)

At late times, when the distance to the pressure front is much larger
than the channel width, we have linear flow

𝑝𝐷 = 2
𝑊𝐷

√𝜋𝑡𝐷 + 𝜎 + 𝑆 , (6.19)

where𝑊𝐷 = 𝑊/𝑟𝑤 is the dimensionless channel width, and 𝜎 is pseu-
doskin, which is due to limited entry as illustrated in Fig. 6.18.

As long as 𝐿 ≫ 𝑟𝑊 , the pseudoskin is2,3

𝜎 = ln( 𝑊𝐷

2𝜋 sin (𝜋 𝐿
𝑊
)
) , (6.20)

where 𝐿 is the distance from the well to the nearest boundary. We will
later see that a similar expression for pseudoskin (Eq. (7.17)) is impor-
tant for the understanding of the productivity of horizontal wells.

As shown in Fig. 6.19, the derivative plot for a channel system will
have a plateau, characteristic of radial flow, at early times, and a line
with slope 1/2 for later times. The radial flow period is used to get
estimates for permeability and skin, and the channel width and pseu-
doskin can be found based on a fitted straight line on pressure versus
√𝑡 plot. We see from Eq. (6.19) that the slope, 𝑚, of the straight line
is

𝑚 = 𝑄
𝑊ℎ√

𝜇
𝜋𝑘𝜙𝑐𝑡

, (6.21)

which gives

𝑊 = 1
𝑚
𝑄
ℎ√

𝜇
𝜋𝑘𝜙𝑐𝑡

, (6.22)

https://doi.org/10.1029/TR036i001p00101
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Figure 6.20: Communication across a
fault

The fault zone is modelled as a plane.

and that the pseudoskin is

𝜎 = (𝑝𝑖 − 𝑝∗)2𝜋𝑘ℎ𝑄𝜇 − 𝑆 , (6.23)

where 𝑝∗ is the extrapolated straight line pressure at 𝑡 = 0. Actual
pseudoskin depends on reservoir heterogeneity, and well test based
estimates (Eq. (6.23)) is preferred to estimates based on the theoreti-
cal formula (6.20).

Figure 6.19: Plots for a channel sys-
tem: The time period with slope 1/2
on the derivative plot corresponds to
linear flow, and the channel width is
estimated based on the slope of the
straight line on the √𝑡 plot.

For cases where the channels are narrow, the radial flow period will
be suppressed, and it will be impossible to to use it to get good esti-
mates for permeability and skin. If we have other data that can give
estimates for the channel width, such as seismic data for fault blocks
and outcrop data for channel belts, we can in these cases use Eq. (6.21)
to get a permeability estimate:

𝑘 = ( 𝑄
𝑚ℎ𝑊 )

2 𝜇
𝜋𝜙𝑐𝑡

. (6.24)

6.4 Leaking boundaries

In this section wewill investigate the effect of boundaries that are not
completely sealing. Two examples will be discussed in more detail:
a partly sealing fault with good reservoir sand on both sides, and a
boundary between good sand and a low permeable background.

Fig. 6.20 illustrates a typical situation where a fault runs through a
reservoir. Wemay have good reservoir sand on both sides of the fault,
and at the fault location there is a zone with reduced permeability.
Both the faulting itself, and subsequent diagenetic processes con-
tribute to the permeability reduction. The permeability in the fault
zone is typically not zero, so communication is possible across the
fault. In general the communication across the fault will be between
different reservoir zones, with different permeability and thickness.

A general model that could be used for investigating the effect of a
non sealing fault on a well test is shown in Fig. 6.21.

Wewill derive the well test response for amodel that has been sim-
plified even further: First, the fault zone is modelled as a plane with
characteristic property 𝛽𝑓 = 𝑘𝑓

𝐿𝑓
. This is the standard representa-

tion of faults in reservoir simulation. Second, we will assume that the
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Figure 6.21: Simplified model for a
non-sealing fault

Figure 6.22: Areal view of a non-
sealing fault with an observation well
on the far side

4 The delta function is zero everywhere,
but ∫𝜖

−𝜖 𝑓(𝑥)𝛿(𝑥 − 𝑥0) 𝑑𝑥 = 𝑓(𝑥0)

5 L.M. Yaxley. “Effect of a Partially
Communicating fault on Transient
Pressure Behavior.” In: SPE Formation
Evaluation (Dec. 1987), pp. 590–598.
DOI : 10.2118/14311-PA.

reservoir on both sides have the same properties and height (essen-
tially the same zone). Last, we will model the flow in two dimensions
only, that is we will ignore the effect of the flow convergence towards
the limited height contact zone.

Fig. 6.22 shows an aerial view of themodel. An active well is placed
at a distance𝐿 from the fault, andwewill also investigate the response
in an observation well on the far side of the fault.

In this analysis we will use 𝐿 as characteristic length for dimen-
sionless parameters:

𝑥𝐷𝐿 =
𝑥
𝐿 𝑡𝐷𝐿 =

𝜂𝑡
𝐿2 =

𝑘𝑡
𝜇𝜙𝑐𝑡𝐿2

, (6.25)

and the fault is characterized by the dimensionless quantity 𝛼:

𝛼 = 𝐿
𝐿𝑓

ℎ𝑓
ℎ
𝑘𝑓
𝑘 . (6.26)

If we ignore the short time effects due to the finite wellbore radius,
the dimensionless pressure in the fault block with a well producing at
at a constant rate is described by the following diffusivity equation:

𝜕2
𝜕𝑥2𝑝1 +

𝜕2
𝜕𝑦2𝑝1 + 2𝜋𝛿(𝑥 + 1)𝛿(𝑦) = 𝜕

𝜕𝑡𝑝1 , (6.27)

where 𝛿 is the Dirac delta function4 which represent a point sink (the
well at 𝑥𝐷𝐿 = −1 and 𝑦𝐷𝐿 = 0). The diffusivity equation that describe
the pressure on the other side of the fault is

𝜕2
𝜕𝑥2𝑝2 +

𝜕2
𝜕𝑦2𝑝2 =

𝜕
𝜕𝑡𝑝2 . (6.28)

The initial condition, and the boundary condition at infinity, is that
pressure is initial pressure: 𝑝1 = 𝑝2 = 0. In addition we have two con-
ditions at the fault that couple the two equations: Flow is continuous
across the fault (𝑥 = 0)

𝜕
𝜕𝑥𝑝1(0, 𝑦) =

𝜕
𝜕𝑥𝑝2(0, 𝑦) , (6.29)

and the flow through the fault is proportional to the pressure differ-
ence across the fault

𝜕
𝜕𝑥𝑝1(0, 𝑦) = 𝛼(𝑝1(0, 𝑦) − 𝑝2(0, 𝑦)) . (6.30)

The equation system (6.27)–(6.30) may be solved using a Laplace
transform in time and a Fourier transform in 𝑦.5 The well pressure

https://doi.org/10.2118/14311-PA
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The complementary error function
erfc() is also discussed on page 91.

(𝑥𝐷 = −1 and 𝑦𝐷 = 0) is

𝑝𝐷(𝑡𝐷𝐿, 𝛼) =
1
2 E1 (

1
4𝑡𝐷𝐿

(𝑟𝑤𝐿 )
2
) + 1

2 E1 (
1
𝑡𝐷𝐿

) − 𝐼(𝑡𝐷𝐿, 𝛼) , (6.31)

where

𝐼(𝑡𝐷𝐿, 𝛼) = √𝜋𝛼𝑒4𝛼 ∫
𝑡𝐷𝐿

0
𝑒4𝛼2𝑢 erfc (2𝛼√𝑢 + 1

√𝑢
) 𝑑𝑢
√𝑢

. (6.32)

We see that the well test response is the sealing fault response (6.4)
minus a correction that is proportional to the transmissibility of the
fault (𝛼). The corresponding derivative diagnostic plot is shown in
Fig. 6.23. For long enough times, the plot falls back to a plateau value
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Figure 6.23: Log derivative diagnostic
plot for a well near a non-sealing fault

of 1/2, so we have full-circle radial flow. The effect of the fault is seen
in an intermediate period, and the fault transmissibility can be esti-
mated based on type-curve matching (see page 132).

The fault properties can also be inferred from the response in
an observation well on the far side of the fault. If the observation
well is directly opposed to the active well as shown in Fig. 6.22, the
observation-well pressure (pressure at 𝑥𝐷 = 𝐿2

𝐿
and 𝑦𝐷 = 0) is

𝑝𝐷(𝑡𝐷𝐿, 𝛼) = 𝐼(𝑡2, 𝛼2)

𝛼2 =
𝐿 + 𝐿2
𝐿 𝛼

𝑡2 = ( 𝐿
𝐿 + 𝐿2

)
2
𝑡𝐷𝐿

(6.33)

where 𝐼(𝑡, 𝛼) is the correction function defined in Eq. (6.32). The cor-
responding derivative diagnostic plot is shown in Fig. 6.24. The time
it takes for the pressure signal to reach the observation well depend
on the fault transmissibility, and again the fault transmissibility can
be estimated based on type-curve matching. For long enough times,
the plot has a plateau value of 1/2, corresponding to full-circle radial
flow.

The next example of a leaking boundary is a system where the well
is placed in a sand body of limited extent. If the well is close to the
edge of the sand-body, and the boundary is linear, this system is called
linear-composite. The system is illustrated in Fig. 6.25.
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Figure 6.24: Log derivative diagnostic
plot for the observation well on the far
side of a non-sealing fault

Figure 6.25: A well close to the edge of
a sand-body

Figure 6.26: Fingerprint of a linear–
composite system

The equations that govern the pressure response of this system is
very similar to the equations for a leaky fault (Eqs. (6.27)–(6.29)), and
they can be solved with the samemethods. The fingerprint diagnostic
plot corresponding to the linear composite are shown in Fig. 6.26.

The characteristics of the plot is an initial plateau, corresponding
to radial flow, followed by a transition to a second higher plateau. The
first plateau reflects the permeability in the sand body where the well
is located, while the second reflects the average permeability in the
sand and the low permeability background:

𝑚 = 𝑄
4𝜋𝑘ℎ

𝑚 = 𝑄
4𝜋𝑘+𝑘2

2
ℎ

(6.34)

If the permeability of the background is much lower than the sand
(𝑘2/𝑘 ⪅ 0.01), then we will see a doubling just as for a completely
closed barrier.





Figure 7.1: Horizontal vs. vertical well

Vertical radial flow.

Intermediate linear flow

Horizontal radial flow.

Figure 7.2: Ideal flow regimes in a
horizontal well.

7
Horizontal wells

Today most new production wells are horizontal or highly deviated.
Compared to a vertical well, a horizontal well has an increased reser-
voir contact and an increased drainage area. As long as vertical com-
munication is sufficient, a horizontal well will typically also have in-
creased productivity. In reservoirs with an aquifer, gas cap or both, or
with water or gas injection, horizontal wells can be judiciously placed
to avoid gas and water coning and early break through of water or gas,
which gives higher oil rates and increased reservoir sweep.

The objectives for testing of horizontal wells are basically the same
as for vertical wells: Determine permeability (horizontal and verti-
cal), skin (formation damage) and pseudoskin (completion effective-
ness), and detecting reservoir and sand body boundaries.

7.1 Flow regimes

The main ideal flow regimes in a horizontal well are illustrated in
Fig. 7.2. The flow regimes are vertical radial flow, where the top and
bottomof the reservoir is not yet seen, intermediate linear flow, which
is similar to flow in a channel, and, when the length of the well is neg-
ligible compared to the radius of investigation, horizontal radial flow.
In addition there will be an initial period dominated by wellbore stor-
age and skin, and a late time boundary dominated flow period.

The ideal log–log diagnostic plot showing these flow regimes are
shown in Fig. 7.3. It should be noted that it in practice can be difficult
to identify all flow regimes.

Figure 7.3: Ideal log–log diagnostic and
flow regimes for a horizontal well
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1 Permeability is a linear operator that
operates on a gradient to produce a
vector. Such operators are called (2,0)
tensors, or more simply tensors of
order 2. A tensor of order 2 can be
represented by a matrix in a given
coordinate system, and the operation
as a matrix–vector multiplication.

Principal directions

KVKH-ratio

Figure 7.4: Small scale heterogeneities

Figure 7.5: Barriers and baffles restrict-
ing vertical flow

7.2 Anisotropy

We have previously assumed that permeability is isotropic and can
be treated as a scalar. However, the permeability is usually different
for vertical and horizontal flow, so for the description of flow around a
horizontalwell, wherewehaveflow in both the horizontal and vertical
direction, this assumption is normally not valid.

Permeability is actually a tensor 1, K, and Darcys law should be ex-
pressed as

𝑞 = −1𝜇K ⋅ ∇𝑝 , (7.1)

or, on component form

𝑞𝑖 = −1𝜇 ∑𝑗
𝐾𝑖𝑗

𝜕
𝜕𝑥𝑗

𝑝 , (7.2)

where K = (𝐾𝑖𝑗). Since permeability is a tensor, flow is in general
not parallel to the pressure gradient. However, the permeability is
associated with certain principal directions in space. If the pressure
gradient is along any of these principal directions the flow will be in
that direction, and the matrix that represent the permeability tensor
is diagonal in a coordinate system that follows the principal direc-
tions. There are three orthogonal principal directions, and the direc-
tions are determined by the geology. In general both the permeability
along the principal directions and the directions themselves are space
dependent, however, the main anisotropy is usually vertical vs. hori-
zontal, in which case the principal directions are

• Orthogonal to bedding (“vertical” 𝑘𝑣 or 𝑘𝑧)

• Parallel to bedding (“horizontal” 𝑘ℎ or 𝑘𝑥 and 𝑘𝑦)

Vertical permeability can be several orders of magnitude smaller than
horizontal permeability. The ratio is called KVKH-ratio and is an im-
portant property for correct reservoir modelling.

The main source of 𝑘𝑣 < 𝑘ℎ anisotropy is small scale hetero-
geneities. Since the nature of deposited material is not constant over
time, there will always, in a sandstone reservoir, be a layered or semi-
layered structure. The spatial frequency of these structures vary, and
can be as high as on the mm scale in the case of tidally influenced
deposits as illustrated in Fig. 7.4. On larger scales (dm–m), both
depositional and diagenetic processes produce horizontal sheets of
shales and cemented barriers that restrict vertical flow as illustrated
in Fig. 7.5. In contrast, in fractured reservoirs (see page 95) the main
fracture direction is often vertical so that the permeability is largest
in the vertical direction.

7.3 Quantitative analysis

In this section we will discuss how the vertical–radial and linear flow
regimes may be analyzed.
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Figure 7.6: Vertical radial flow

7.3.1 Vertical–radial flow

The vertical radial flow regime (Fig. 7.6) can be analyzed using a
straight line fit on a semilog plot. That is, permeability and skin can
be found in the same way as for a vertical well. But since the per-
meability is anisotropic it is unclear which permeability is actually
estimated by this procedure, and what the measured skin factor rep-
resents.

The flow around a vertical well is described by the anisotropic dif-
fusivity equation

[𝑘𝑦
𝜕2
𝜕𝑦2 + 𝑘𝑧

𝜕2
𝜕𝑧2 ] 𝑝 = 𝜇𝜙𝑐𝑡

𝜕
𝜕𝑡𝑝 , (7.3)

where the well runs along the x-direction. Due to the permeability
anisotropy, the pressure front travels faster in the horizontal direc-
tion than in the vertical, and the lines of equal pressure are ellipses.

We can transform the anisotropic equation (7.3) into an equiv-
alent isotropic equation by scaling lengths 𝑥𝑖 with √𝑘′/𝑘𝑖, so that
𝑥′𝑖 = √𝑘′/𝑘𝑖𝑥𝑖. Then we have

𝜕2
𝜕𝑥𝑖2

= 𝜕2𝑥′𝑖
𝜕𝑥𝑖2

𝜕2

𝜕𝑥′𝑖
2 =

𝑘′
𝑘𝑖

𝜕2

𝜕𝑥′𝑖
2 . (7.4)

Applying the above transformation to Eq. (7.3), then the resulting
equation is

𝑘′ [ 𝜕2
𝜕𝑦′2

+ 𝜕2
𝜕𝑧′2

] 𝑝 = 𝜇𝜙′𝑐′𝑡
𝜕
𝜕𝑡𝑝 , (7.5)

where we have replaced 𝜙, and 𝑐𝑡 with 𝜙′, and 𝑐′𝑡 to indicate that
these parameters may not be invariant under the coordinate trans-
form. Since the parameters are volumetric they will be invariant if
the coordinate transform preserve volume, i.e. 𝐿𝑦𝐿𝑧 = 𝐿′𝑦𝐿′𝑧.We have

𝐿′𝑦𝐿′𝑧 =√
𝑘′
𝑘𝑦
𝐿𝑦√

𝑘′
𝑘𝑧
𝐿𝑧 =

𝑘′

√𝑘𝑦𝑘𝑧
𝐿𝑦𝐿𝑧 . (7.6)

Thus, under the condition

𝑘′

√𝑘𝑦𝑘𝑧
= 1 ⟹ 𝑘′ = √𝑘𝑦𝑘𝑧 , (7.7)

the parameters 𝜙 and 𝑡 will be invariant under the coordinate trans-
form. Flow governed by the anisotropic diffusivity equation can then
be described by an equivalent isotropic equation:

𝑘′ [ 𝜕2
𝜕𝑦′2

+ 𝜕2
𝜕𝑧′2

] 𝑝 = 𝜇𝜙𝑐𝑡
𝜕
𝜕𝑡𝑝 . (7.8)

This implies that the permeability estimate found by fitting to a
straight line,

𝑘′ = 𝑄𝜇
4𝜋𝐿

1
𝑚 , (7.9)
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An anisotropic reservoir behaves like
an isotropic reservoir with effective
permeability 𝑘 = √𝑘𝑧𝑘𝑦.

Figure 7.8: The circular wellbore is
transformed to an ellipse.

where 𝐿 is the well length, corresponds to the equivalent isotropic
permeability

𝑘′ = √𝑘𝑧𝑘𝑦 . (7.10)

In order to understand how the estimated skin is to be interpreted
we will have a closer look at how the shape of the bore-hole and its
surroundings are transformed. The anisotropy is characterized by the
KVKH–ratio,𝑀:

𝑀 = 𝑘𝑧
𝑘𝑦

. (7.11)

In the equivalent isotropic system lengths in the 𝑥𝑖 direction are
scaled with

√
𝑘′
𝑘𝑖

=

√√√
√

√𝑘𝑧𝑘𝑦
𝑘𝑖

, (7.12)

thus

𝐿′𝑦 = 4√𝑀 𝐿𝑦 𝐿′𝑧 = 4
√

1
𝑀 𝐿𝑧 . (7.13)

Typically, 𝑘𝑧 < 𝑘𝑦, so that𝑀 < 1. This yields 𝐿′𝑦 < 𝐿𝑦 and 𝐿′𝑧 > 𝐿𝑧,
thus due to the scaling of lengths (Eq. (7.13)), the effective thickness
of the reservoir is increased. As a result, the duration of the vertical
radial flow period is increased in an anisotropic reservoir. In spite of
this, the flow regime may often not be observed with realistic well
paths. Vertical positioning of horizontal wells can be poor even when
geo-steering tools are used, and wells are also intentionally drilled
through layering to create improved reservoir contact. Examples of

Figure 7.7: Typical well paths of a real
horizontal well

well paths are shown in Fig. 7.7, and it is unlikely that vertical radial
flow is reached in these wells.

We see from Eq. (7.13) that the circular wellbore is transformed to
an ellipse as shown in Fig. 7.8, and the damaged volume around the
wellbore is also transformed in a similar manner. The permeability
of the damaged zone does typically not have the same anisotropy as
the reservoir, so we will have an anisotropic permeability in the skin
region of the equivalent model. Any near wellbore heterogeneities
will also be transformed, and will influence pressure profile differ-
ently than the bulk 𝑘𝑣–𝑘ℎ model. As a consequence, the measured
skin has no direct physical interpretation in terms of permeability and
thickness of a damaged zone. Predicting the skin based on a model of
the damaged zone is non-trivial. The skin is therefore estimated by
the difference between the pressure in a isotropicmodelwith effective
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Figure 7.9: Intermediate linear flow.
The additional pressure drop due to
flow convergence towards the well is
called pseudoskin.

permeability 𝑘 and a circular wellbore with radius 𝑟𝑤, and the actual
extra pressure drop due to a damaged zone in an anisotropic reservoir.

The coordinate transform is volume preserving, so it does not in-
fluence the wellbore storage effect.

7.3.2 Intermediate–linear flow

As shown in Fig. 7.9, the intermediate flow situation is analogous to
linear flow in a channel (see page 73), and the well pressure is given
by

𝛥𝑝 = √
𝜇

𝜋𝜙𝑐𝑡𝑘ℎ
𝑄
𝑙𝑤ℎ

√𝑡 + 𝑄𝜇
2𝜋√𝑘𝑣𝑘ℎ𝑙𝑤

(𝑆 + 𝜎(𝑀, ℎ, 𝑧𝑤)) . (7.14)

Here 𝑙𝑤 is the length of the well. The first term is the solution to the
1-D diffusivity equation with a point source, and since the flow is hor-
izontal it only depend on the horizontal permeability 𝑘ℎ = 𝑘𝑦 = 𝑘𝑥.
The second term is the pressure drop due to skin, which depend on
the effective isotropic permeability √𝑘𝑣𝑘ℎ . The third term is pres-
sure drop due to convergence of flow into the well in two dimensions
(pseudoskin). Here 𝑧𝑤 is the height from the formation bottom, as
illustrated in Fig. 7.9.

The linear flow regime can be analyzed to get estimates for hor-
izontal permeability, 𝑘ℎ, and pseudoskin, 𝜎. We see from Eq. (7.14)
that if we plot pressure as a function of √𝑡 and fit the linear flow pe-
riod to a straight line. Then the horizontal permeability is found from
the slope,𝑚, as

𝑘ℎ =
𝑄2𝜇

𝑙2𝑤ℎ2𝜋𝜙𝑐𝑡
1
𝑚2 . (7.15)

If the effective permeability, √𝑘𝑣𝑘ℎ, and skin 𝑆 is known, the pseu-
doskin can be found using the extrapolated pressure 𝛥𝑝∗ at 𝑡 = 0

𝜎 = 2𝜋√𝑘𝑣𝑘ℎ𝑙𝑤
𝑄𝜇 𝛥𝑝∗ − 𝑆 . (7.16)

The ideal pseudoskin in a homogeneous system depend on the
three ratios𝑀 = 𝑘𝑣/𝑘ℎ, ℎ/𝑟𝑤, and 𝑧𝑤/ℎ as

𝜎(𝑀, ℎ, 𝑧𝑤) = ln( ℎ
𝜋𝑟𝑤 (1 + √𝑀) sin(𝜋𝑧𝑤

ℎ
)
) , (7.17)

where 𝑧𝑤/ℎ is the relative position (depth) of the well in the zone. In
theory, one can use a measured pseudoskin to evaluate the well posi-
tioning. In practice this may be impossible due to near wellbore het-
erogeneities or variation in the relative vertical position along well-
bore

7.4 Near well heterogeneities

All well testing is sensitive to near well heterogeneities, and a hori-
zontal well is even more sensitive to near well heterogeneities than a
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Figure 7.12: Effect of finite well length

vertical well. An illustration of a horizontal well in a heterogeneous
environment is shown in Fig. 7.10. The heterogeneities will influence

Figure 7.10: A horizontal well in a
heterogeneous environment

skin and pseudoskin, so the measured skin and pseudoskin will con-
tain information relating to the heterogeneity pattern. On the other
hand, the presence of these heterogeneities will influence the pres-
sure response in a way that may mask the vertical radial flow regime.

The idealized analysis assume that the inflow is constant along the
well. This may not hold due to a heterogeneous formation, uneven
formation damage, or well friction, as illustrated in Fig. 7.11.

Figure 7.11: Uneven inflow along the
well due to heterogeneous formation
(a), uneven well damage (b) and well
friction (c).7.5 Well tip effects

If the well does not penetrate the whole reservoir there will be a heel
and toe effect that may mask the vertical radial flow or linear flow.

The drainage pattern around the central part of the well will be ra-
dial, while the drainage at the tip will have a (hemi)-spherical shape.
This is illustrated in Fig. 7.12.

To get a rough estimate for when the spherical flow pattern start
influencing the pressure response in the well wemay assume that the
contribution from each flow regime (radial vs. spherical) is propor-
tional to the area of the corresponding pressure front. The area of
the spherical front is

𝐴spherical ≈ 4𝜋𝑟2inv ∝ 𝑡 , (7.18)

where 𝑟inv = √4𝜂𝑡 is the radius of investigation (Eq. (3.26)). The area
of the radial front is

𝐴radial ≈ 2𝜋𝑙𝑤𝑟inv ∝ √𝑡 . (7.19)

The spherical contribution is negligible for short times, but due to
the different time dependency of the two terms, spherical flow will
ultimately be dominant. The tip effect is negligible when 𝐴spherical ≪
𝐴radial:

𝑟inv ≪
1
2𝑙𝑤 , (7.20)
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2 The reader might find it confusing
that the effective permeability is dif-
ferent in two and three dimensions
(Eqs. (7.10) and (7.22)). Note that the
equation for the permeability esti-
mate (7.9) contain the well length, 𝑙𝑤,
which has to be scaled for three di-
mensional flow. When taking this into
account, the permeability estimated in
the well test is 𝑘 = √𝑘ℎ𝑘𝑣 just as in
the two dimensional case. Note also
that the relative scaling of horizontal
and vertical lengths is the same.

which gives

𝑡 ≪ 𝑙2𝑤
16𝜂 =

𝜇𝜙𝑐𝑡
16𝑘′ 𝑙

′2
𝑤 , (7.21)

where Eq. (7.21) is expressed in terms of lengths in an isotropic reser-
voir. We will need to take into account anisotropy. By repeating the
procedure outlined on page 81 (scaling lengths with√𝑘′/𝑘𝑖), but now
in three dimensions, we see that we need to make the following sub-
stitutions2:

𝑘′ → 3√𝑘2ℎ𝑘𝑣 , 𝑙′𝑤 → 6

√
𝑘𝑣
𝑘ℎ

𝑙𝑤 and ℎ′ → 3

√
𝑘ℎ
𝑘𝑣

ℎ , (7.22)

where ℎ is the reservoir thickness. Wemay conclude that the tip effect
can be neglected as long as

𝑡 ≪ 𝜇𝜙𝑐𝑡
163√𝑘2ℎ𝑘𝑣

3

√
𝑘𝑣
𝑘ℎ
𝑙2𝑤 = 𝜇𝜙𝑐𝑡

16𝑘ℎ
𝑙2𝑤 . (7.23)

The time where the tip effect can be ignored depend only on the
horizontal permeability, and Eq. (7.23) can also be obtained by just
considering Eq. (7.20) as an inequality in one dimension along the
wellbore.

In short horizontal wells the tip effect may come into play before
the pressure front reaches the top and bottom of the reservoir. In
these cases we will not see the intermediate linear flow regime. If the
well is in themiddle of the reservoir, the time to reach top and bottom
is determined by

𝑟inv =
1
2ℎ

′ , (7.24)

where lengths are measured in the equivalent isotropic reservoir. Us-
ing the definition of radius of investigation, solving for time, and
making the substitutions (Eq. (7.22)) we get

𝑡𝑟 =
𝜇𝜙𝑐𝑡
16𝑘′ ℎ

′2 = 𝜇𝜙𝑐𝑡
163√𝑘2ℎ𝑘𝑣

(3

√
𝑘ℎ
𝑘𝑣
ℎ)

2

= 𝜇𝜙𝑐𝑡
16𝑘𝑣

ℎ2 , (7.25)

where 𝑡𝑟 is the time to reach the top of the reservoir. This time depend
only on the vertical permeability, and Eq. (7.25) can also be derived by
just considering Eq. (7.24) as an equality in the vertical direction.

If we say that Eq. (7.23) is equivalent to

𝑡 < 0.01 𝜇𝜙𝑐𝑡16𝑘ℎ
𝑙2𝑤 , (7.26)

then by comparing Eq. (7.26) and Eq. (7.25) we see that intermediate
linear flow can be observed when

𝑡𝑟 < 0.01𝜇𝜙𝑐𝑡16𝑘ℎ
𝑙2𝑤

𝜇𝜙𝑐𝑡
16𝑘𝑣

ℎ2 < 0.01𝜇𝜙𝑐𝑡16𝑘ℎ
𝑙2𝑤

100
𝑘ℎ
𝑘𝑣
ℎ2 < 𝑙2𝑤 (7.27)
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Criterion for observing intermediate
linear flow

This yields the following criterion for observing intermediate linear
flow:

𝑙𝑤 > 10
√

𝑘ℎ
𝑘𝑣

ℎ . (7.28)



Figure 8.1: The concept of hydraulic
fracturing

8
Fractured wells

Hydraulic fracturing is a popular and effective stimulation method.
A fracture is defined as a single crack initiated from the wellbore by
hydraulic fracturing, that is by injecting a fluid (typically water with
additives) at high pressure. The fracture is kept open by injecting a
proppant (sand or similar particulate material) with the fracturing
fluid. A fractured well has an increased productivity since the frac-
ture provides an increased surface for the reservoir fluid to enter the
wellbore. The orientation of the fracture plane is determined by the
minimum stress direction, and since the maximum stress is always
the overburden in deep reservoirs, fractures are vertical in deep reser-
voirs. Note that hydraulically induced fractures are different from
naturally occurring fractures, which will be discussed in a separate
chapter (page 95). Natural fractures are often called “fissures” to
avoid confusion.

In addition to the usual reservoir characterization goals, well tests
are performed in order to investigate the efficiency of hydraulic frac-
turing jobs, and tomonitor any possible degradation of fracture prop-
erties due to production. In order to reach these goals, a separate
well test should preferentially be performed prior to fracturing of the
reservoir to determine permeability and skin.

8.1 Laplace transform in well testing

In this and in subsequent chapters we will apply the Laplace trans-
form. The Laplace transform is useful for solving differential equa-
tions, as it can transform partial differential equations into ordinary
differential equations we are able to solve. The transform was in fact
developed to solve the diffusion equation, i.e. an equation on the form
of Eq. (2.14). Joseph Fourier had introduced amethod to solve the dif-
fusion equation using the Fourier transform. Laplace recognized that
the Fourier transform was only applicable for a limited space, and in-
troduced the Laplace transform to find solutions in indefinite space.

The Laplace transform ℒ ∶ 𝑓 → ̃𝑓 is an integral transform, and it
is usually applied as a transform in time:

̃𝑓(𝑠) = ∫
∞

0
𝑓(𝑡)𝑒−𝑠𝑡 𝑑𝑡 . (8.1)



88 LECTURE NOTES IN WELL -TESTING

The partial differential operator we used in the superposition princi-
ple (see page 39) was linear. Also the Laplace transform is a linear
operator:

ℒ (𝑓 + 𝑔) = ℒ𝑓 +ℒ𝑔 = ̃𝑓 + ̃𝑔
ℒ (𝑐𝑓) = 𝑐ℒ𝑓 = 𝑐 ̃𝑓 . (8.2)

A further property of the Laplace transform is the following:

ℒ(𝑓 ∗ 𝑔) = ℒ(𝑓)ℒ(𝑔) , (8.3)

where the first expression is a finite convolution defined as:

(𝑓 ∗ 𝑔)(𝑡) = ∫
𝑡

0
𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 . (8.4)

The power of the convolution is that is can be used to find the inverse
Laplace transform as follows:

ℒ−1 (ℒ(𝑓)ℒ(𝑔)) = 𝑓 ∗ 𝑔 (8.5)

Calculating the integral, we observe that the Laplace transform of
unity and of 𝑡 are

ℒ(1) = ∫
∞

0
𝑒−𝑠𝑡 𝑑𝑡 = [−1𝑠 𝑒

−𝑠𝑡]
∞

0
= 1
𝑠

ℒ(𝑡) = ∫
∞

0
𝑡𝑒−𝑠𝑡 𝑑𝑡 = [−𝑡𝑠𝑒

−𝑠𝑡]
∞

0
−∫

∞

0
−1𝑠 𝑒

−𝑠𝑡 𝑑𝑡 = 1
𝑠ℒ(1) =

1
𝑠2 ,

(8.6)

where we are applying integration by parts when solving the trans-
form in time 𝑡. We observe that time 𝑡 and the variable 𝑠 has an in-
verse correspondence, hence late times 𝑡 corresponds to small 𝑠. This
correspondence will be utilized in the next chapter.

The transformation of the partial derivatives are

ℒ (𝜕𝑓𝜕𝑥) = ∫
∞

0

𝜕𝑓
𝜕𝑥𝑒

−𝑠𝑡 𝑑𝑡 = 𝑑 ̃𝑓
𝑑𝑥

ℒ (𝜕𝑓𝜕𝑡 ) = ∫
∞

0

𝜕𝑓
𝜕𝑡 𝑒

−𝑠𝑡 𝑑𝑡 = 𝑠 ̃𝑓(𝑥, 𝑠) − 𝑓(𝑥, 0) , (8.7)

where we use the basic rule∫ 𝜕
𝜕𝑥
𝑓(𝑥, 𝑦)𝑑𝑦 = 𝜕

𝜕𝑥
∫𝑓(𝑥, 𝑦)𝑑𝑦 for the first

equality, and integration by parts for the second equality.
Using the above rules, we see that the diffusivity equation (2.16),

𝜂∇2𝑝 = 𝜕𝑝
𝜕𝑡 , (8.8)

is transformed into the form

𝜂∇2 ̃𝑝 = 𝑠 ̃𝑝 − 𝑝𝑖 . (8.9)
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Figure 8.2: Characteristic parameters
for a vertically fractured well

Fracture linear flow

8.2 Vertical fractures

As discussed in the introduction, fractures in deep reservoirs are typ-
ically in the vertical direction. In this chapter we will therefore con-
sider the analysis of awell test in a vertical well with a vertical fracture
that covers the whole reservoir thickness.

A simplified model for this situation is illustrated in Fig. 8.2, and
the fracture is characterized by fracture half length, 𝑥𝑓, fracture
width, 𝑤𝑓, and fracture permeability, 𝑘𝑓.

8.3 Flow periods and flow regimes

The possible flow regimes in a vertically fractured well are shown in
Fig. 8.3: Initially there is flow only in the fractures (a), this is called

Figure 8.3: Possible flow regimes in a
vertically fractured well

fracture linear flow. This regime is, however, never observed in prac-
tice, and the effect of the fracture is instead seen as an increased vol-
ume forwellbore storage. In the second regime, (b), the pressure front
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Bilinear flow

Formation linear flow

Formation radial flow

Figure 8.4: Due to the reduced flow
convergence, the effect of the fracture
will be a negative skin or increased
defective wellbore radius.

Solving by Laplace transform.

extends both linearly along the fracture and linearly into the reser-
voir close to the fracture. This is called bilinear flow. This regime is
only observed when the fracture has a low conductivity. In the third
regime, (c), the pressure front moves linearly out from the fracture
into the reservoir. This is formation linear flow. When the distance
from the well to the pressure front is large compared to the fracture
length, we are in the fourth regime, (d), where the flow is infinite-
acting radial flow, called formation radial flow.

8.4 Formation radial flow

The radial flowcanbe analyzed is using the standardmethods for non-
fractured wells. In particular this means that permeability and skin is
found by fitting to a straight line on semi-log plot. As illustrated in
Fig. 8.4, there will be a reduced convergence of flow lines into a frac-
tured well compared to a non-fractured well. A successfully fractured
well will thus have a negative skin, reflecting the desired improved
productivity.

8.5 Formation linear flow

In this section we will derive the equation for linear (1-dimensional)
flow, and show how the analysis of the formation linear flow period
can provide an estimate for how far the fracture has propagated into
the reservoir, that is the fracture half-length.

As long as the propagating pressure front is close enough to the
fracture such that we can ignore tip effects, the problem is one di-
mensional. The diffusivity equation is then

𝜕2𝑃
𝜕𝑥2 =

1
𝜂
𝜕𝑃
𝜕𝑡 , (8.10)

where
𝑃 = 𝑝𝑖 − 𝑝 and 𝜂 = 𝑘

𝜇𝜙𝑐𝑡
. (8.11)

Pressure is at initial pressure at infinity, giving the boundary con-
ditions

𝑃(𝑥, 0) = 0 and 𝑃(∞, 𝑡) = 0 . (8.12)

Darcy’s law gives the boundary condition for the pressure gradient at
the fracture:

𝜕𝑃
𝜕𝑥

|||𝑥=0
= − 𝜇

4𝑥𝑓ℎ𝑘
𝑄(𝑡) , (8.13)

where we have used that half of the flow rate goes into each flow di-
rection (see Fig. 8.2).

Equations (8.10)–(8.13) can be solved by Laplace transform in time:
Similar to the transform into Eq. (8.9), the partial differential equa-
tion (8.10) is then transformed into an ordinary differential equation
in x:

𝑑2 ̃𝑃
𝑑𝑥2 =

𝑠
𝜂

̃𝑃 . (8.14)
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1 The inverse transform can be found in
good tables of Laplace transforms, or
by using a computer algebra program
such as Maple or Mathematica.
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Figure 8.5: A plot of the error function
and the complementary error function
for positive values.

where we have applied the initial condition (8.12). The general solu-
tion to Eq. (8.14) is

̃𝑃(𝑥, 𝑠) = 𝐴 exp (√
𝑠
𝜂𝑥) + 𝐵 exp (−√

𝑠
𝜂𝑥) . (8.15)

Due to the boundary condition at infinity (Eq. (8.12)) we have 𝐴 =
0, and B is determined by applying the boundary condition on the
derivative (Eq. (8.13)):

𝜕 ̃𝑃
𝜕𝑥

|||𝑥=0
= ∫

∞

0
− 𝜇
4𝑥𝑓ℎ𝑘

𝑄(𝑡)𝑒−𝑠𝑡 𝑑𝑡 = − 𝜇
4𝑥𝑓ℎ𝑘

𝑄̃(𝑠) . (8.16)

Assuming a constant well rate 𝑄(𝑡) = 𝑄 starting at 𝑡 = 0 then gives

𝑄̃(𝑠) = 𝑄 ⋅ 1̃ = 𝑄
𝑠 , (8.17)

where we use that the Laplace transform of unity is 1/𝑠 from Eq. (8.6).
Thus

−√
𝑠
𝜂𝐵 =

𝜕 ̃𝑃
𝜕𝑥

|||𝑥=0
= − 𝜇

4𝑥𝑓ℎ𝑘
𝑄
𝑠

𝐵 =
𝜇√𝜂
4𝑥𝑓ℎ𝑘

𝑄𝑠−
3
2 (8.18)

This give the following solution in Laplace space:

̃𝑃(𝑥, 𝑠) =
𝜇√𝜂
4𝑥𝑓ℎ𝑘

𝑄𝑠−
3
2 exp (−√

𝑠
𝜂𝑥) . (8.19)

By an iterative procedure one can show that

ℒ(𝑡𝑛) = 𝛤(𝑛 + 1)
𝑠𝑛+1 , (8.20)

where the gamma-function 𝛤 is an extension of the factorial function
such that 𝛤(𝑛+1) = 𝑛!. Applying the inverse Laplace functionℒ−1 to
Eq. (8.20) then yields:

ℒ−1(𝑠𝑛) = 𝑡−𝑛−1
𝛤(−𝑛) . (8.21)

Further we have the following inverse Laplace transforms1:

ℒ−1 (1𝑠 exp (−𝑎√𝑠)) = erfc ( 𝑎
2√𝑡

) . (8.22)

The complementary error function erfc() = 1 − erf(), where erf() is the
error function:

erf(𝑥) = 2
√𝜋

∫
𝑥

0
𝑒−𝑢2𝑑𝑢 . (8.23)

We observe from the plot in Fig. 8.5 that the complementary error
function is rapidly converging towards zero.

With the method of finite convolutions given by Eq. (8.5), we can
apply the inverse transforms Eq. (8.21) and Eq. (8.22) on Eq. (8.19) to
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Fracture half-length is estimated based
on the slope of a straight line on a 𝑝 vs.
√𝑡 plot.

Figure 8.6: Bilinear flow

2 H. Cinco-Ley and Samaniego-V. F.
“Transient Pressure Analysis for Frac-
tured Wells.” In: Journal of Petroleum
Technology (Sept. 1981), pp. 1749–
1766. DOI : 10.2118/7490-PA.
3 𝛤(⋅) is the gamma function.

A special 4√𝑡 plot is used to estimate
fracture conductivity.

find the pressure as a function of time and distance from the fracture:

𝑃(𝑥, 𝑡) =
𝑄𝜇√𝜂
4𝑥𝑓𝑘ℎ

[2√
𝑡
𝜋 𝑒−

𝑥2
𝜂𝑡 − 𝑥

√𝜂
erfc ( 𝑥

2√𝜂𝑡
)] . (8.24)

Due to the shape of the complementary error function, we see that
the pressure 𝑃 converge to zero away from the well, thus the pressure
converge to the initial pressure away from the well.

For well testing purposes we are only interested in the well pres-
sure, and inserting 𝑥 = 0 into Eq. (8.24) gives

𝑝𝑤(𝑡) = 𝑝𝑖 −
𝑄𝜇√𝜂

2𝑥𝑓𝑘ℎ√𝜋
√𝑡 . (8.25)

We see from Eq. (8.25) that the well pressure response in the for-
mation linear flow regime is proportional to the square root of time.
The flow regime is identified on the log-derivative diagnostic plot as
a period with slope 1

2
, and on a plot of pressure as a function of√𝑡 the

period with formation linear flow will show a straight line with slope
𝑚:

𝑚 =
𝑄𝜇√𝜂

2𝑥𝑓𝑘ℎ√𝜋
= 𝑄
2𝑥𝑓ℎ√

𝜇
𝑘𝜋𝜙𝑐𝑡

. (8.26)

If permeability is known, for instance from analysis of the formation
radial flow period or from a test performed prior to fracturing, the
slope can be used to estimate the fracture half length:

𝑥𝑓ℎ =
𝑄
2𝑚√

𝜇
𝑘𝜋𝜙𝑐𝑡

. (8.27)

Note that the property actually measured is the fracture area, 𝐴𝑓 =
2𝑥𝑓ℎ.

8.6 Bilinear flow

If the fracture has a finite conductivity, an early flowperiodwith bilin-
ear flow, as illustrated in Fig. 8.6, may be observed. This flow period
can be analyzed to obtain an estimate for fracture conductivity.

The early time behavior with a finite permeability fracture can be
shown to be2

𝑝 = 𝑝𝑖 −𝑚4√𝑡 , (8.28)

where 3

𝑚 =
𝛤( 3

4
)𝑄𝜇

𝜋ℎ√𝑘𝑓𝑤𝑓
4√𝜙𝜇𝑐𝑡𝑘

. (8.29)

We see from Eq. (8.28) that the pressure response for bilinear flow
is proportional to the 4th root of time. Thus, the flow regime is iden-
tified on the log-derivative diagnostic plot as a period with slope 1

4
,

and on a plot of pressure as a function of 4√𝑡, the period with forma-
tion linear flowwill show a straight line with slope𝑚. If permeability

https://doi.org/10.2118/7490-PA
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is known, the slope can be used to estimate the fracture conductivity
𝑘𝑓𝑤𝑓:

𝑘𝑓𝑤𝑓 = (
𝛤( 3

4
)𝑄𝜇

𝜋ℎ𝑚 )

2
1

√𝜙𝜇𝑐𝑡𝑘
≈ 0.152
√𝜙𝜇𝑐𝑡𝑘

(𝑄𝜇ℎ𝑚)
2

. (8.30)





9
Naturally fractured reservoirs

Naturally fractured reservoirs constitute a huge portion of petroleum
reservoirs throughout the world, especially in Middle East. A natural
fracture are created when stresses exceed the rupture strength of the
rock, and the fracturing process ismore prevalent in brittle rocks such
as limestone, as opposed to sandstone.

The presence of fractures is crucial for the productivity of low per-
meable rocks, as the highly conductive fractures increase the effective
permeability of the formation.

A naturally fractured formation is generally represented by a tight
matrix rock broken up by highly permeable fractures (see Fig. 9.1).

Figure 9.1: Representations of a
dual porosity reservoir. Outcrop of
fractured carbonate rock (left), and a
simplified 3D “stacked sugar cubes”
representation (right).

The fractures tend to form a continuous fracture network throughout
the formation, and they represent the dominant flow paths. If only
the fractures are connected, and there is virtually no long distance
transport in the matrix system, the formationmay be denoted as dual
porosity. If there is some flow through the matrix system, the forma-
tion is denoted as dual porosity – dual permeability. Note that macro-
scopic behavior of these systems in many cases are single porosity,
where the presence of fractures only effect effective permeability and
porosity. In these notes we will only discuss dual porosity systems.

9.1 Dual porosity model

In a dual porosity system, the macroscopic fluid flow is only in the
fractures. A characteristic feature of dual porosity systems is that the
effective permeability of the formation, as found by well testing and
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Figure 9.2: A cored well in a fractured
reservoir. The permeability of the
core plugs represent the matrix and
is not representative for formation
permeability which describes flow in
the fractures.

Figure 9.3: Flow in a dual porosity
system.

production, is much larger that the permeability measured on core
material:

𝑘formation ≫ 𝑘matrix = 𝑘core . (9.1)

This is illustrated in Fig. 9.2.
In many cases the number of fractures penetrated by a well is lim-

ited, and extra fractures must be created in the near well volume
by hydraulic fracturing to sufficient productivity. The wells produce
from the fracture system only, but the bulk of the oil is stored in the
matrix:

𝑉matrix𝜙matrix ≫ 𝑉fracture𝜙fracture . (9.2)

As a result of production, a pressure difference betweenmatrix and
fracture develops, and the matrix will supply fluid to the fractures.
This oil is subsequently produced through the fracture system as il-
lustrated in Fig. 9.3

In well testing, dual porosity systems are analyzed in terms of the
dual porositymodel commonly used in reservoir simulation. The dual
porosity model is a macroscopic model where the representative el-
ementary volume (REV) contains many matrix blocks. The fractures
are thus not explicitly modelled, in stead each point in space (REV) is
modelled as having two sets of dynamic variables, one set for matrix,
and one set for fractures:

• Two pressures, matrix pressure 𝑝𝑚, and fracture pressure 𝑝𝑓.

• Two set of saturations, matrix saturations (𝑆𝑜𝑚, 𝑆𝑤𝑚, and 𝑆𝑔𝑚), and
fracture saturations (𝑆𝑜𝑓, 𝑆𝑤𝑓, and 𝑆𝑔𝑓).

• The oil and gas in matrix and fracture can also have different fluid
composition (in the BO-model: 𝑅𝑠𝑚 and 𝑅𝑠𝑓).

In terms of static variables the dual porosity model is described using
one permeability (the bulk permeability of the fracture system 𝑘𝑓𝑏),
two porosities (the bulk fracture porosity 𝜙𝑓𝑏, and the bulk matrix
porosity 𝜙𝑚𝑏), and amatrix–fracture coupling term, 𝜎, which describe
the ability of the matrix to supply fluid to the fractures. Note that the
permeability 𝑘𝑓𝑏 is not the permeability in the fractures, it is the ef-
fective permeability of the formation, and that the porosities are bulk
porosities, i.e.

𝜙𝑓𝑏 =
Pore volume in fractures

Total volume

𝜙𝑚𝑏 =
Pore volume in matrix

Total volume

. (9.3)

How the dual porosity parameters are actually specified in various
reservoir simulation software does however differ between simula-
tors.

The dual porosity model is often visualized in terms of the War-
ren and Root “sugar cube” model, where the matrix is a set of equal
rectangular cuboids as illustrated in Fig. 9.1. The validity of the dual
porosity model is however not limited to this picture.
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Flow from matrix to fracture is propor-
tional to the pressure difference.

Shape factor

Dimensionless variables for the dual
porosity model

9.2 The diffusivity equation for dual porosity

In this section a diffusivity equation will be developed for the dual
porosity model, and the main dimensionless parameters that charac-
terize the solutions to this equation will be identified.

The equation for the flow in the fracture system is similar to the
ordinary single porosity hydraulic diffusivity equation (2.13), but the
flow from the matrix into the fractures must be accounted for:

𝑘𝑓𝑏
𝜇 ∇2𝑝𝑓 + 𝜎𝑚𝑓 = 𝜙𝑓𝑏𝑐𝑡𝑓

𝜕
𝜕𝑡𝑝𝑓 . (9.4)

Here 𝜎𝑚𝑓 is the volume of liquid flowing from matrix to fracture per
time and bulk volume, and Eq. (9.4) expresses themass balance in the
fracture system. There is no bulk flow in the matrix system, so there
the mass balance is simply expressed as

𝜙𝑚𝑏𝑐𝑡𝑚
𝜕
𝜕𝑡𝑝𝑚 = −𝜎𝑚𝑓 . (9.5)

The two equations (9.4) and (9.5) are coupled through an equation for
matrix–fracture flow. In the standard dual porosity model this flow is
proportional to the pressure difference:

𝜎𝑚𝑓 =
𝜎
𝜇(𝑝𝑚 − 𝑝𝑓) , (9.6)

where 𝜎 is the matrix–fracture coupling. If the permeability in the
matrix blocks is homogeneous, and the matrix blocks are of similar
shape and size, it follows from Darcys law that 𝜎 is proportional to
the matrix permeability. Eq. (9.6) is therefore usually written as

𝜎𝑚𝑓 = 𝛼𝑘𝑚𝑏
𝜇 (𝑝𝑚 − 𝑝𝑓) , (9.7)

where
𝛼 = 𝜎

𝑘𝑚𝑏
(9.8)

is called the shape factor, and

𝑘𝑚𝑏 =
𝑉𝑚

𝑉𝑚 + 𝑉𝑓
𝑘𝑚 . (9.9)

where 𝑉𝑚 is the volume of matrix, 𝑉𝑓 is the fracture volume, and 𝑘𝑚 is
the permeability of the matrix rock. The matrix–fracture coupling, 𝜎,
is dimensionless, while the shape factor, 𝛼 has dimension of inverse
area. We will see later (on page 105, see Eq. (9.46)) that the shape
factor can be interpreted as 𝛼 = 1

ℎ2𝑚
𝛼′, where 𝛼′ is a pure geometric

factor representing the shape of the matrix blocks, while ℎ𝑚 is the
typical matrix block size.

For further analysis we will express Eqs. (9.4)–(9.6) on dimension-
less form using the following variables and parameters:

𝑥𝐷 = 𝑥
𝑟𝑤

𝑡𝐷 =
𝑘𝑓𝑏𝑡

(𝜙𝑚𝑏𝑐𝑡𝑚 + 𝜙𝑓𝑏𝑐𝑡𝑓)𝜇𝑟2𝑤

𝑝𝐷 =
2𝜋𝑘𝑓𝑏ℎ
𝑄𝜇 (𝑝𝑖 − 𝑝)

𝜆 = 𝑟2𝑤
𝑘𝑓𝑏

𝜎 𝜔 =
𝜙𝑓𝑏𝑐𝑡𝑓

𝜙𝑓𝑏𝑐𝑡𝑓 + 𝜙𝑚𝑏𝑐𝑡𝑚

. (9.10)



98 LECTURE NOTES IN WELL -TESTING

Storativity ratio

Inter-porosity flow parameter

Equations in the Laplace domain are on
dimensionless form.

Now Eq. (9.6) can be substituted in Eq. (9.5), and then we have two
coupled equations: One for the flow in the fracture system

∇2
𝐷𝑝𝑓 + 𝜆(𝑝𝑚 − 𝑝𝑓) = 𝜔

𝜕𝑝𝑓
𝜕𝑡𝐷

, (9.11)

and one for the mass balance in the matrix.

(1 − 𝜔)𝜕𝑝𝑚𝜕𝑡𝐷
= −𝜆(𝑝𝑚 − 𝑝𝑓) . (9.12)

Note that these equations holds for pressures both on normal and di-
mensionless form.

Compared to a single porosity system, the dual porosity system is
characterized by two additional dimensionless parameters. These pa-
rameters are the storativity ratio

𝜔 =
𝜙𝑓𝑏𝑐𝑡𝑓

𝜙𝑓𝑏𝑐𝑡𝑓 + 𝜙𝑚𝑏𝑐𝑡𝑚
, (9.13)

and the inter-porosity flow parameter

𝜆 = 𝑟2𝑤
𝑘𝑓𝑏

𝜎 = 𝑘𝑚𝑏𝑟2𝑤
𝑘𝑓𝑏

𝛼 . (9.14)

The storativity ratio express how much of the total compressibility
can be attributed to the fractures, and in a fractured reservoir 𝜔 is
small: 𝜔 < 10−2. In other systems with dual porosity like properties,
such as certain high contrast layered formations, 𝜔 can be larger. The
inter-porosity flow parameter express the strength of the fracture–
matrix coupling, that is the ability of the matrix to supply fluid to the
fracture system. Typical values for 𝜆 is in the range 10−3 to 10−9.

9.2.1 Solution in the Laplace domain

We will analyze the equation system (9.11) and (9.12) in terms of the
Laplace transform (see page 87). The Laplace transformed equation
for flow in the fracture system (Eq. (9.11)) is

∇2 ̃𝑝𝑓 + 𝜆( ̃𝑝𝑚 − ̃𝑝𝑓) = 𝜔𝑠 ̃𝑝𝑓 , (9.15)

and the equation for mass balance in the matrix (Eq. (9.12)) is

(1 − 𝜔)𝑠 ̃𝑝𝑚 = −𝜆( ̃𝑝𝑚 − ̃𝑝𝑓) . (9.16)

To simplify notation, we always assume dimensionless numbers in
the Laplace domain. Using Eq. (9.16), the matrix pressure can be ex-
pressed in terms of the fracture pressure as

̃𝑝𝑚 = 𝜆
(1 − 𝜔)𝑠 + 𝜆 ̃𝑝𝑓 , (9.17)

and this can be substituted in Eq. (9.15) to get the equation in Laplace
space for the fracture pressure:

(∇2 − 𝑠𝜔(1 − 𝜔)𝑠 + 𝜆
(1 − 𝜔)𝑠 + 𝜆 ) ̃𝑝𝑓 = 0 . (9.18)
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1 For the modified Bessel’s equa-
tion and its solutions, see https:
//en.wikipedia.org/wiki/Bessel_
function.
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Figure 9.4: The modified Bessel func-
tions I0 and K0.

Since the wells produce from the fracture system, and there is no
macroscopic matrix flow, this is the equation that is relevant for well
testing.

We can define the following function

𝑓(𝑠, 𝜆, 𝜔) = 𝑠𝜔(1 − 𝜔)𝑠 + 𝜆
(1 − 𝜔)𝑠 + 𝜆 , (9.19)

then Eq. (9.18) is simplified to the following form:

(∇2 − 𝑓) ̃𝑝𝑓 = 0 . (9.20)

The limiting behavior of the function 𝑓(𝑠, 𝜆, 𝜔) will play an important
role in the well test interpretation.

For a well test in a fully penetrating vertical well we are interested
in the radial version of Eq. (9.20):

( 𝑑
2

𝑑𝑟2 +
1
𝑟
𝑑
𝑑𝑟 − 𝑓(𝑠)) ̃𝑝𝑓 = 0 . (9.21)

This can be rearranged to the following equation:

(𝜒2 𝑑
2

𝑑𝜒2 + 𝜒 𝑑
𝑑𝜒 − 𝜒2) ̃𝑝𝑓 = 0 , (9.22)

where 𝜒 = 𝑟√𝑓(𝑠). Equation (9.22) is the modified Bessel’s equation1

with constant equal 0. The general solution to Eq. (9.22), or equiva-
lently to Eq. (9.21), is

̃𝑝𝑓(𝑟, 𝑠) = 𝐴 I0(𝑟√𝑓(𝑠)) + 𝐵 K0(𝑟√𝑓(𝑠)) , (9.23)

where 𝐴 and 𝐵 are constants determined by the boundary conditions,
and I0(⋅) and K0(⋅) are modified Bessel functions of first and second
kind. A plot of the Bessel functions I0(⋅) and K0(⋅) is shown in Fig. 9.4.
From this plot we observe that the function I0(𝑥) grows and K0(𝑥) de-
creases with increasing 𝑥. Then the boundary condition 𝑝𝐷(∞, 𝑠) = 0
implies that 𝐴 = 0.

Darcys law determines the boundary condition at the well (𝑟 = 1,
remember that we are on dimensionless form in the Laplace domain)
which in the Laplace domain is (see Eq. (8.17))

𝑑 ̃𝑝𝑓
𝑑𝑟

|||𝑟=1
= −1𝑠 . (9.24)

By combining Eq. (9.24) and (9.23), and using

𝑑
𝑑𝑧K0(𝑧) = −K1(𝑧) , (9.25)

we can solve for 𝐵:
𝑑 ̃𝑝𝑓
𝑑𝑟 = 𝐵 𝜕

𝜕𝑟K0(𝑟√𝑓(𝑠)) = −𝐵K1(𝑟√𝑓(𝑠))√𝑓(𝑠)

𝑑 ̃𝑝𝑓
𝑑𝑟

|||𝑟=1
= −𝐵K1(√𝑓(𝑠))√𝑓(𝑠) = −1𝑠

𝐵 = 1
𝑠K1(√𝑓(𝑠))√𝑓(𝑠)

, (9.26)

https://en.wikipedia.org/wiki/Bessel_function
https://en.wikipedia.org/wiki/Bessel_function
https://en.wikipedia.org/wiki/Bessel_function
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The early time and late time behavior
of the well test can be analyzed based
on the large 𝑠 and small 𝑠 limits of
𝑓(𝑠, 𝜆,𝜔) (Eq. (9.19)).

2 Laplace transform:
̃𝑓(𝑠) = ∫∞

0 𝑓(𝑡)𝑒−𝑠𝑡 𝑑𝑡

which gives the following general solution for the pressure:

̃𝑝(𝑠) =
K0(𝑟√𝑓(𝑠))

𝑠√𝑓(𝑠) K1(√𝑓(𝑠))
. (9.27)

Aswehave 𝑟 = 1 at thewell, Eq. (9.27) reduce to the following solution
for the well pressure:

̃𝑝𝑤(𝑠) =
K0(√𝑓(𝑠))

𝑠√𝑓(𝑠) K1(√𝑓(𝑠))
. (9.28)

To get an expression for the well test response, we need to get the
inverse transform of Eq. (9.28). An explicit expression for the inverse,
and thus for the the pressure as a function of time, has not been found.
However, the early time and late time behavior can be analyzed based
on the large 𝑠 and small 𝑠 limits of 𝑓(𝑠). The middle time behavior
can in a similar way be approximately analyzed under some extra as-
sumptions on 𝜔 and 𝜆. The inverse transform can also be evaluated
numerically. We will in the following analyze the early and late time
behavior and investigate how the well test may be analyzed.

From Eq. (8.6) we have that the Laplace transform of time is 1/𝑠2,
thus early times (small 𝑡𝐷) correspond to large 𝑠. Further, we see from
Eq. (9.19) that for large 𝑠 we have

𝑓(𝑠, 𝜆, 𝜔) ≈ 𝑠𝜔 . (9.29)

Similarly, for late times (𝑠 → 0) we have

𝑓(𝑠, 𝜆, 𝜔) ≈ 𝑠 . (9.30)

For 𝑓 = 𝑠𝜔, we see that Eq. (9.20) is (∇2 − 𝑠𝜔) ̃𝑝𝑓 = 0, which corre-
sponds to the following inverse of the the Laplace transform:

∇2
𝐷𝑝𝑓 = 𝜔

𝜕𝑝𝑓
𝜕𝑡𝐷

. (9.31)

Similarly, for 𝑓 = 𝑠, we see that Eq. (9.20) is (∇2 − 𝑠) ̃𝑝𝑓 = 0, which
corresponds to the following inverse of the the Laplace transform:

∇2
𝐷𝑝𝑓 =

𝜕𝑝𝑓
𝜕𝑡𝐷

. (9.32)

Thus, at early and late time we are back to the dimensionless diffu-
sivity equation, representing a infinite acting system. These early and
late time systems are similar up to a scaling of dimensionless time 𝑡𝐷
by the constant 𝜔.

We see from the definition of 𝜔 (Eq. (9.13)) and the dimensionless
time 𝑡𝐷 (Eq. (9.10)) that

𝑡𝐷
𝜔 =

𝑘𝑓𝑏𝑡
(𝜙𝑚𝑏𝑐𝑡𝑚 + 𝜙𝑓𝑏𝑐𝑡𝑓)𝜇𝑟2𝑤

𝜙𝑓𝑏𝑐𝑡𝑓 + 𝜙𝑚𝑏𝑐𝑡𝑚
𝜙𝑓𝑏𝑐𝑡𝑓

=
𝑘𝑓𝑏𝑡
𝜙𝑓𝑏𝑐𝑡𝑓

(9.33)

thus a division of dimensionless time 𝑡𝐷 with 𝜔 switches between a
system with the total compressibility of fractures andmatrix to a sys-
tem with only fracture compressibility. Also from the definition of
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Both early and late time in an infinitely
acting well test in a dual porosity
system show single porosity behavior.
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Figure 9.5: Dimensionless semilog plot
of dual porosity with varying 𝜔 from
𝜔 = 0.1 in green to 𝜔 = 0.001 in blue.
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Figure 9.6: Dimensionless semilog plot
of dual porosity with varying 𝜆 from
𝜆 = 10−7 in red to 𝜆 = 10−4 in blue.

the Laplace transform2, multiplying 𝑠 with 𝜔 corresponds to dividing
time with 𝜔. Accordingly, 𝑓 = 𝑠 represents the infinitely acting sys-
tem with total compressibility, and 𝑓 = 𝑠𝜔 represents the infinitely
acting system with fracture compressibility.

If we have nomatrix–fracture flow (𝜆 = 0) the systemwill be single
porosity with only the fracture system active, and by setting 𝜆 = 0 in
Eq. (9.19) we get

𝑓(𝑠, 0, 𝜔) = 𝑠𝜔 . (9.34)

This gives the same pressure equation as for the early time behavior,
thus the early time behavior (𝑓 = 𝑠𝜔) is single porosity infinitely act-
ing with fracture compressibility. Similarly, the late time behavior
(𝑓 = 𝑠) is single porosity infinitely acting with total compressibility.

We see from the dimensionless expression for the infinitely acting
single porosity well test (3.49), and Eq. (9.31) that the early time di-
mensionless well pressure is

𝑝𝐷 early =
1
2 (ln (

𝑡𝐷
𝜔 ) + 𝑎 + 2𝑆) , (9.35)

where 𝑎 = ln(4) − 𝛾 ≈ 0.8091. Similarly, from Eq. (9.32) the late time
pressure is

𝑝𝐷 late =
1
2 (ln (𝑡𝐷) + 𝑎 + 2𝑆) . (9.36)

The time when cross-over from early to late time behavior occurs
is related to 𝜆. By inspecting Eq. (9.19) we see that we have early time
behavior when

𝜔(1 − 𝜔)𝑠 ≫ 𝜆 ⟹ 𝑡𝐷 ≪ 𝜔(1 − 𝜔)
𝜆 , (9.37)

and late time behavior when

(1 − 𝜔)𝑠 ≪ 𝜆 ⟹ 𝑡𝐷 ≫ 1 − 𝜔
𝜆 . (9.38)

Ideally dual porosity behavior will manifest itself as two parallel
straight lines in a semilog plot, as illustrated in Figs. 9.5 and 9.6, and
a dip on the log–log derivative diagnostic plot.

Combining Eq. (9.35) and (9.36), we see that the separation of the
two lines in dimensionless time, that is at fixed pressure 𝑝𝐷 early(𝑡1) =
𝑝𝐷 late(𝑡2) for dimensionless times 𝑡𝑖, gives

𝑡1
𝑡2
= 𝜔 , (9.39)

as can be seen in in Figs. 9.5 and 9.6. Likewise, the separation in di-
mensionless pressure at a fixed time 𝑡𝐷 gives

𝑝𝐷 early(𝑡𝐷) − 𝑝𝐷 late(𝑡𝐷) = −12 ln(𝜔) . (9.40)

In a fractured reservoir, the time where the late time behavior starts
(Eq. (9.38)) is (almost) independent of 𝜔 since 1 − 𝜔 ≈ 1. A small
𝜆, i.e. poor matrix fracture coupling, corresponds to late start of late
time behavior, and a large 𝜆 corresponds to early start. Note also that
𝜔 < 1, so that ln(𝜔) < 0, which means that a small 𝜔 corresponds to a
large separation of the two lines.



102 LECTURE NOTES IN WELL -TESTING

Figure 9.7: Radial fracture flow; Flow
only in fractures, matrix is undis-
turbed.

Figure 9.8: Radial bulk flow; Matrix
and fracture pressure in equilibrium.

3 The absolute speed of the pressure

front is proportional 𝑡−
1
2 (eq. 3.25),

so it is always slowing with time. The
relative speed discussed here refers to
the proportionality constant.

Figure 9.9: Transition period with
matrix–fracture equilibration; Tran-
sient pressure gradient driving flow in
matrix blocks.

4 See George Stewart:“Well test design
and analysis” pages 582-586 for a
discussion of transient models).

As mentioned earlier, no explicit expression for the well pressure
as a function of time exist. Finding the inverse of the Laplace trans-
form for arbitrary times require numerical inversion. The inversion
of Laplace transforms is in general a hard problem, and there exist
no general algorithm for the inversion. However, since we here have
an explicit expression for the Laplace transformed pressure, and since
the pressure has a nice monotonic behavior, a number of possible al-
gorithms do exist. In cases where we only know the Laplace trans-
formed pressure for a number of discrete values of 𝑠, the selection of
algorithms is much more restricted, but an algorithm that is suitable
for the kind of functions that occur in well testing is the Stehfest al-
gorithm. This algorithm will be discussed in more detail later (see
page 130).

9.3 Flow periods

In this section we will give a qualitative presentation of the flow
regimes and corresponding flow periods that were identified in the
preceding section.

The first flow period is radial fracture flow, that is radial flow in the
fracture system. The pressure front spreads radially from the well,
and the matrix–fracture flow is negligible since the necessary pres-
sure difference has not yet been developed. Since diffusivity of the
radial flow in this period is determined by the small fracture stora-
tivety, 𝜙𝑓𝑏𝑐𝑡𝑓, the pressure front is spreading relatively fast. Radial
fracture flow is illustrated in Fig. 9.7.

The late flow period is radial bulk flow, where fractures and matrix
are in quasi-equilibrium and the pressure front spreads with the same
speed in both fractures andmatrix. Since diffusivity of the radial flow
in this period is determined by the larger total storativety, 𝜙𝑓𝑏𝑐𝑡𝑓 +
𝜙𝑚𝑏𝑐𝑡𝑚, the pressure front is spreading relatively slower than in the
first period3. Radial bulk flow is is illustrated in Fig. 9.8.

The intermediate flow period is a transition period with matrix–
fracture equilibration. The spread of the pressure front slows down
in the transition period, and the matrix–fracture flow is in a transient
state as illustrated in Fig. 9.9. The transition will show up as a pro-
nounced dip on the log-derivative diagnostic plot, and in the period
after the dip minimum, the slope on the diagnostic plot will be close
to 1, similar to constant drainage of a finite volume (see Fig. 9.10)It
should be noted that the nature of the transition period is depen-
dent on how the matrix–fracture coupling is modelled. In alternative
“transientmodels” the dip in log-derivativewill not be as pronounced
4.

9.4 Analyzing a drawdown test

Both early and late time behavior of a dual porosity system is similar
to a single porosity system, which means that in these two time peri-
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5 Alain C. Gringarten. “Interpretation
of Tests in Fissured and Multilayered
Reservoirs With Double-Porosity
Behavior: Theory and Practice.” In:
Journal of Petroleum Technology (Apr.
1984), pp. 549–564. DOI : 10.2118/
10044-PA.

ods the pressure will be a straight line on a semilog plot. We will now
show how these two straight lines and their separation can be used to
get estimates for formation permeability, 𝑘𝑓𝑏, matrix–fracture cou-
pling, 𝜎, and storativity ratio, 𝜔. In practice the first straight line is
often hidden by wellbore storage and near near well effects. However,
a dual porosity system will also show a dip on the log–log derivative
diagnostic plot, and a fit to log–log derivative data, a variant of type
curve matching, can also give estimates for 𝜎 and 𝜔.

We will first discuss the analysis based on semilog plot where, ide-
ally, dual porosity behavior will manifest itself as two parallel straight
lines as shown in Fig. 9.10.

Figure 9.10: Semilog plot with dual
porosity behavior

The second straight line is used in the usual manner to get esti-
mates for bulk permeability, 𝑘𝑓𝑏, and skin, 𝑆. The length of the radial
fracture flow period depends on 𝜆 (see Fig. 9.6), and the first straight
line is often only seen when 𝜆 is very small. In the cases it is appar-
ent, the semilog plot can be used to find 𝜔 and 𝜆 (see Fig. 9.10). As
shown in Fig. 9.10 two dimensionless times 𝑡1 and 𝑡2, can be found
based on the pressure in the middle of the transition. The storativity
ratio is estimated based on the separation of the two lines (Eq. (9.39)
and (9.40)):

𝜔 = 𝑡1
𝑡2

. (9.41)

and an estimate for 𝜆 is found based on either of the two times:5

𝜆 =
0.561 ⋅ (𝜙𝑚𝑏𝑐𝑡𝑚 + 𝜙𝑓𝑏𝑐𝑡𝑓)𝜇𝑟2𝑤

𝑘𝑓𝑏𝑡2
=

0.561 ⋅ 𝜙𝑓𝑏𝑐𝑡𝑓𝜇𝑟2𝑤
𝑘𝑓𝑏𝑡1

(9.42)

The numerical factor (0.561) is based on an analysis of the intermedi-
ate period and on numerical inversion of Eq. (9.28). One should not
expect Eq. (9.42) to give very accurate estimates for 𝜆. A third time 𝑡3 is
defined as the start of the late time period based on visual inspection
of the log–derivative plot. The time 𝑡3 can also used for estimating 𝜆:

𝜆 =
4(𝜙𝑚𝑏𝑐𝑡𝑚 + 𝜙𝑓𝑏𝑐𝑡𝑓)𝜇𝑟2𝑤

𝑘𝑓𝑏𝑡3
. (9.43)

https://doi.org/10.2118/10044-PA
https://doi.org/10.2118/10044-PA
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Fitting data to a type curve is a much
used method in well test analysis.

6 Gringarten, “Interpretation of Tests
in Fissured and Multilayered Reservoirs
With Double-Porosity Behavior:
Theory and Practice.”

The numerical factor (4) is again based on numerical inversion.

9.4.1 Derivative analysis

Early time dual-porosity behavior is usually suppressed by wellbore
storage and near wellbore effects. However, the log–derivative will
have a dip with a minimum which depends on 𝜔. For large times
(and small 𝜔) the dimensionless pressure log–derivative is a func-
tion of 𝑡𝐷𝜆. Based on these observations a number of type curves can
be created by numerically inverting Eq. (9.28) for various combina-
tions of these parameters. Examples of such type curves are shown
in Fig. 9.11. With known permeability, 𝜆 and 𝜔 can be found by fit-

10−3 10−2 10−1 100 101
𝑡𝐷𝑏 = (𝑡𝐷𝜆)/4

10−2

10−1

𝑝′ 𝐷 𝜔
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𝜔
=
0.002
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=
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𝜔
=
0.01

𝜔
=
0.02

𝜔 = 0.05

𝜔 = 0.1

Figure 9.11: Example of a type curve
for log–log derivative diagnostic plot
with dual porosity behavior.

ting the end of transition period to a type-curve by adjusting the two
parameters as shown in Fig. 9.12. This is an example of a general

10−3 10−2 10−1 100 101 102
𝑡𝐷𝑏 = (𝑡𝐷𝜆)/4
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𝜔
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𝜔
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=
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𝜔
=
0.02

𝜔 = 0.05

𝜔 = 0.1

Figure 9.12: Finding 𝜆 and 𝜔 by fitting
to a log–log derivative type curve:
Early time data that are influenced by
wellbore storage and skin are removed.
Data points are moved horizontally by
adjusting 𝜆, and 𝜔 is found based on
the minimum.

method much used in well test analysis: fitting to type curves. Sev-
eral other examples of type curves for the analysis of dual porosity
systems are given in the review article by Alain C. Gringarten.6

In a dual porosity simulator, the parameters that characterize the
system are 𝑘𝑓𝑏, 𝜎, 𝜙𝑓𝑏, and 𝜙𝑚𝑏, and based on the estimates for 𝜆 and
𝜔 we have

𝜎 =
𝑘𝑓𝑏
𝑟2𝑤

𝜆 and 𝜙𝑓𝑏 =
𝜔

1 − 𝜔𝜙𝑚𝑏 , (9.44)
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Slabs or strata
𝛼′ = 12

Sticks
𝛼′ = 32

Cubes
𝛼′ = 60

Figure 9.13: Geometrical factor 𝛼′ for
various matrix block geometries

where 𝜙𝑚𝑏 is based on core plug measurements. It should however be
noted that theway these parameters are actually specified in different
simulators will vary. In the “industry standard” simulator ECLIPSE
the matrix–fracture coupling is for instance specified by giving the
matrix permeability and the shape factor separately (Eq. (9.7)).

Physically the matrix–fracture flow depend on matrix block per-
meability, 𝑘𝑚𝑏, matrix block geometry, and the characteristic matrix
block size, ℎ𝑚. Given an estimate for 𝜆 and some prior knowledge of
matrix block geometry, it should therefore be possible to say some-
thing about matrix block size. If all matrix blocks have the same size
and shape, we could express Eq. (9.7) as

𝜎𝑚𝑓 =
𝜎
𝜇(𝑝𝑚 − 𝑝𝑓) = ( 𝛼

′

ℎ𝑚
) (𝑘𝑚𝑏

𝜇 ) (
(𝑝𝑚 − 𝑝𝑓)

ℎ𝑚
) . (9.45)

The first term is proportional to matrix-block area per volume, and is
the product of a pure geometric factor 𝛼′ and ℎ−1𝑚 , and the last term
is the pressure gradient, which is the driving force for flow. Eq. (9.45)
gives

𝜎 = 𝑘𝑚𝑏
ℎ2𝑚

𝛼′ , (9.46)

so the characteristic matrix block size is

ℎ𝑚 = √𝛼′
𝜆 √

𝑘𝑚𝑏
𝑘𝑓𝑏

𝑟𝑤 . (9.47)

Examples of the geometrical factor 𝛼′ for variousmatrix block geome-
tries are shown in Fig. 9.13.

Based on Eq. (9.47) it is in principle possible to estimate matrix
block size from 𝜆 if we know something about block shape. Since ac-
tual block sizes vary throughout the formation, this estimate is in any
case only an indication of a typical size, and due to diagenesis, frac-
ture walls are additionally often covered with calcite cement. In these
cases, the measured 𝜆 from well-testing is insufficient for estimating
block size.

9.5 Skin in fractured reservoirs

Since it is assumed that a representative elementary volume contain
many fractures, the dual porositymodel is amacroscopicmodelwhich
is valid only on length scales much larger than the matrix block size.
This means that the model is not valid for near wellbore flow. This
fact contribute to the suppression of early time dual–porosity behav-
ior in real well tests, and is also important for the interpretation of the
physical significance of a measured skin in the well. If the well inter-
sects the fracture system, pressure dropswill be significantly less than
predicted by the dual porosity model. The reason for this is that the
flow follows the fractures so that the near well flow pattern will not
have the logarithmic convergence close to the well that is responsible
for much of the pressure drop in an equivalent single porosity model
(see Fig. 9.14). Based on flow in a network, wells with fracture sys-
tem contact should have a negative skin. The negative skin is larger
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Figure 9.14: A well located in a fracture
system. Beyond a distance 𝑟 ⪆ 16ℎ𝑚,
the reservoir behaves like an effective
dual porosity system, with radial flow
towards the well. In the inner region
the flow pattern is determined by the
discrete fracture network.

7 Fractals are systems with no charac-
teristic length scale.

for large matrix block sizes, and for a square network an approximate
formula is

𝑆 ≈ 𝜋
2 − ln(ℎ𝑚𝑟𝑤

) . (9.48)

This approximation is only valid for matrix block sizes ℎ𝑚 > 5𝑟𝑤.
Wells that do not intersect fractures have larger pressure drops

than predicted, and a corresponding large positive skin. The missing
fracture–well contact introduce an area around the well with reduced
permeability (matrix permeability 𝑘𝑚) compared to the effective per-
meability of the formation (bulk fracture permeability 𝑘𝑓𝑏), and if we
use the formula for a circular damage area we get the following ap-
proximate expression for skin

𝑆 ≈ (
𝑘𝑓𝑏
𝑘𝑚

− 1) ln( ℎ𝑚2𝑟𝑤
) . (9.49)

It should be noted that wells in fractured reservoirs are usually
acidized or hydraulically fractured to obtain good communication
with the fracture system. A successful well stimulation will result in
a large negative skin.

9.6 Validity of model

The dual porosity model is a macroscopic theory based on the rep-
resentative elementary volume (REV) concept. The short and early
middle time behavior of a well test in a fractured reservoir will how-
ever often correspond to length scales than are smaller than the REV.
This implies that any analysis of these time periods based on the dual
porosity model is approximate at best. The relevance of type curves
used for well storage and skin correction can for instance be ques-
tioned, as it is not expected that the dual porosity model can describe
the corresponding time periods well.

Fracture systems are often localized. Two examples are shown in

Figure 9.15: Examples of localized
fracture systems. Fractures near a fault
zone, and located in a high stress zone
at the top of an anticline.

Fig. 9.15; fractures that are clustered in a fracture zone near a large
fault, and fractures that are located in regions of high stress such as
the top of an anticline. Such systems can not be analyzed in terms of
a simple dual porosity model with homogeneous properties. A well in
a fractured zone on the top of an anticline should for instance be ana-
lyzed in terms of a chanalized system (see page 72), and in this context
the well test can be used to estimate the extent of the fractured zone.

Some fracture systems are highly irregular in the sense that frac-
ture andmatrix block sizes have a large variation. Typically the varia-
tion can span several orders of magnitude and the system approaches
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Multi porosity models.

Figure 9.16: Layered system with dual
porosity like behavior.

fractal behavior7. To capture the behavior of such systems, large frac-
tures must be explicitly modelled, while the smaller fractures may be
included as dual porosity.

The dual porosity model has a single variable set representing the
inner state of the matrix blocks. This is a good approximation if the
pressure profile in thematrix blocks have reached a semi steady state,
and due to this the model is often called the pseudo-semi-steady-
state (PSSS) inter-porosity flow model. In reality the real profile will
have a transient behavior. Multi porosity models is an attempt to in-
clude these transients by describing the inner state of thematrix with
more variables, each describing layers within matrix blocks. In par-
ticular, themodel often known as the “transient interporositymodel”
is a continuous variant of a multi-porosity model.

In real systems, matrix blocks have a varying shape and size, while
multi porosity models assume a given shape and size for all blocks.
Thus, the actual transient behaviormay not bewell described by these
models. Also due to diagenesis, the fracture walls are often covered
with calcite cement, and the matrix–fracture pressure drop will be
localized over these barriers. In these cases, a semi-steady-state is
developed early.

The dual–porosity and dual–porosity–dual–permeability model
may also be applicable in layered systems. Layer communication is
governed by diagenetic or depositional barriers of unknown extent
and strength. Dual porosity layer communication (𝜆) can be obtained
from well test data.

9.7 Final comments

Dual porosity effects are elusive and may not be readily accessible by
well testing for all systems where they are important in production.

A number of heterogeneous systems show well test responses that
can be mis-interpreted as dual porosity effects. The occurrence of
natural fractures must be established from the inspection of whole
core or well logs before applying the dual porosity model for well test
interpretation. Note, however, that high-contrast heterogeneous or
layered systems may also show dual-porosity dual-permeability be-
havior and the use of these models need not be limited to naturally
fractured reservoirs.

Fractured reservoirs with large matrix–fracture coupling are effec-
tively single porosity, but the effective permeability can only be mea-
sured by well testing.





In gas reservoirs, the diffusivity equa-
tion is non-linear.

10
Gas reservoirs

The objectives of well testing in gas wells are the same as in oil and
water wells. The well test gives estimates for formation permeability,
and probe reservoir structure such as the location of faults. The test
can also contribute to reservoir and well monitoring by giving reser-
voir pressure and skin. Due to high flow rates, the skin in gas wells
is however often rate dependent, and multi rate testing is needed for
skin estimation.

The analysis methods used in oil-well testing can however not be
directly applied to the testing of gas wells. The reason for this is that
the fluid properties have a stronger pressure dependency; compress-
ibility and viscosity can not be treated as a constants, and constant
surface volume rates corresponds to variable down-hole rates. We
will in this chapter show that some smart tricks, in particular the con-
cept known a s pseudo-pressure, can be employed so that the familiar
analysis methods can, at least approximately, still be applied.

Before any major approximations have been made, the general
equation for the pressure is (see page 15)

∇ ⋅ (𝑘𝜌(𝑝)𝜇(𝑝) ∇𝑝) = 𝜙𝑐𝑡(𝑝)𝜌(𝑝)
𝜕
𝜕𝑡𝑝 . (10.1)

Since the parameters, 𝜌, 𝜇, and 𝑐𝑡 depend on pressure, Eq. (10.1) is
non-linear (see page 39 for the definition of a linear partial differ-
ential equation). All of the methods developed over the preceding
chapters are derived under the condition that the governing equa-
tion (2.13) is linear. Thus, in order to take advantage of these meth-
ods, Eq. (10.1) must be approximately linearized by a change of vari-
ables 𝑝 or 𝑡. The new variable replacing pressure is called pseudo-
pressure, and the use of this variable instead of pressure in the anal-
ysis is standard procedure in gas well testing. The introduction of an
additional variable change for time, that is pseudo-time, may reduce
non linearities further in some cases, and can be introduced in cases
when the total pressure change in the test is large.

10.1 Pseudo pressure

In order to take advantage of the methods developed for the testing
of oil wells in gas well testing, Eq. (10.1) must be linearized. We will
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Pseudo-pressure

Figure 10.1: Pseudo pressure is a
monotonous function of pressure

The pseudo-pressure function, 𝜓(𝑝), is
a pure fluid property.

Un-normalized pseudo pressure

show that the equation can be approximately linearized by a variable
change as long as the total pressure change is not too large. Thus,
if the total pressure change in the test period is small, well test in
gas reservoirs can be analyzed using the same methods and equa-
tions as for oil reservoirs provided that pressure is replaced bypseudo-
pressure in the analysis.

Pseudo-pressure 𝜓 is defined as

𝜓(𝑝) = 𝜇𝑖
𝜌𝑖
∫

𝑝

𝑝0

𝜌(𝑝′)
𝜇(𝑝′) 𝑑𝑝

′ , . (10.2)

where 𝑝0 is some reference pressure, and 𝜇𝑖 and 𝜌𝑖 are viscosity and
density at initial reservoir pressure. The differential equation for
pseudo pressure is

𝑘∇2𝜓 = 𝜙𝑐𝑡(𝑝)𝜇(𝑝)
𝜕
𝜕𝑡𝜓 . (10.3)

Note that the choice for reference pressure𝑝0 is arbitrary, as Eq. (10.2)
only contains derivatives of the pseudo-pressure.

Applying the fundamental theorem of calculus, we obtain the fol-
lowing:

∇𝜓(𝑝) = 𝜕𝜓
𝜕𝑝∇𝑝 =

𝜇𝑖
𝜌𝑖
𝜌(𝑝)
𝜇(𝑝)∇𝑝

𝜕
𝜕𝑡𝜓(𝑝) =

𝜕𝜓
𝜕𝑝

𝜕
𝜕𝑡𝑝 =

𝜇𝑖
𝜌𝑖
𝜌(𝑝)
𝜇(𝑝)

𝜕
𝜕𝑡𝑝 . (10.4)

Using the equality’s above, we can show that Eq. (10.3) is equivalent
with Eq. (10.1). The formulationusing pseudopressure (Eq. 10.3) does
not introduce any extra approximations to the full nonlinear formu-
lation (Eq. (10.1)), and it is still nonlinear as the right hand side is
pressure dependent.

Pseudo pressure, 𝜓, has dimension pressure and is a monotonous
function of pressure. Note also that 𝜓 is a pure fluid property, by that
we mean that it is a characteristic of a given reservoir fluid. The same
pseudo-pressure function, 𝜓(𝑝), applies to all tests in wells in a given
reservoir.

To obtain the pseudo pressure a good model for the density and
viscosity as a function of pressure is needed. This model should be
based on on some keymeasurements performed on the reservoir fluid,
including compositional analysis. These measurements can be used
to create a tuned equation of state and viscosity correlation.

Inmany textbooks the pseudo pressure is expressed using the com-
pressibility factor, 𝑍(𝑝):

𝜓(𝑝) = 𝜇𝑖𝑍𝑖
𝑝𝑖

∫
𝑝

𝑝0

𝑝′
𝜇(𝑝′)𝑍(𝑝′) 𝑑𝑝

′ . (10.5)

Since 𝜌(𝑝) ∝ 𝑝/𝑍(𝑝), this definition is identical to the definition in
Eq. (10.2). Note, however, that it is also common in many text to use
the so called un-normalized pseudo pressure, 𝑚(𝑝), which is defined
as
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Diffusivity is a constant evaluated at
conditions at the start of the test.

1 The boundary conditions are dis-
cussed on page 20 and 27

𝑚(𝑝) = 2∫
𝑝

𝑝0

𝑝′
𝜇(𝑝′)𝑍(𝑝′) 𝑑𝑝

′ . (10.6)

𝑚(𝑝) does not have the dimension of pressure, and numerical values
are very different from the corresponding true pressures. In all other
aspects,𝑚(𝑝) and 𝜓(𝑝) are interchangeable.

10.1.1 Pseudo pressure in low pressure reservoirs (𝑝2 analysis)

If the reservoir pressure is low it can bemodelled as an ideal gas. Thus,
the density is determined by the ideal gas law,

𝜌(𝑝, 𝑇) = 𝑝
𝑅𝑇 , (10.7)

and the viscosity is independent of pressure. The pseudo pressure is
then

𝜓(𝑝) = 1
2𝑝𝑖

(𝑝2 − 𝑝20) . (10.8)

Inserting Eq. (10.8) into Eq. (10.3) then yields

𝑘∇2𝑝2 = 𝜙𝑐𝑡(𝑝)𝜇
𝜕
𝜕𝑡𝑝

2 . (10.9)

Well test analysis in the low pressure regime thus amounts to replac-
ing pressure with the pressure squared, and is therefore called 𝑝2-
analysis.

We can further simplify Eq. (10.9) by assuming that the total com-
pressibility for a gas can be approximated by the liquid compressibil-
ity, 𝑐𝑡 ≃ 𝑐𝑙, and that the liquid compressibility for an ideal gas can be
approximated as 𝑐𝑙 ≃ 1/𝑝:

𝑘∇2𝑝2 = 2𝜙𝜇 𝜕𝜕𝑡𝑝 . (10.10)

At reservoir temperatures in the range 50–150 °C, the approxima-
tions above are accurate for pressures 𝑝 < 140 bar.

10.2 Analyzing tests using pseudo pressure

If the total pressure change in the test period is small the product 𝑐𝑡𝜇
may approximately be treated as a constant during the test. The dif-
ferential equation for pseudo pressure is then our well known linear
diffusivity equation.

𝜂∇2𝜓 = 𝜕
𝜕𝑡𝜓 , (10.11)

where the diffusivity, 𝜂 = 𝑘
𝜙𝑐𝑡𝜇

, is a constant evaluated at the pressure

at the start of the test.
The notion of a constant rate boundary condition is different when

pseudo pressure replace pressure in the analysis. We will show that
well tests should be analyzed in terms of (constant) mass rates when
pseudo pressure is used, in contrast to reservoir volume rates when
pressure is used. Note that a constant mass rate, 𝑄𝑚, corresponds to
a constant surface volume rate, 𝑄𝑠, as 𝑄𝑚 = 𝑄𝑠𝜌𝑠, while a constant
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Oil well test are analyzed using reser-
voir volume rates. Gas well test are
analyzed using mass rates.

reservoir rate corresponds to a variable surface rate as 𝑄𝑠 =
𝜌(𝑝)
𝜌𝑠

𝑄.
The variable volume rate which should be used for determining the
inner boundary condition for ∇𝜓 via Darcys law1 is

𝑄(𝑝) = 𝑄𝑚
𝜌(𝑝) =

𝜌𝑠
𝜌(𝑝)𝑄𝑠 . (10.12)

By rearranging the first equation in Eq. (10.4) we see that

𝑘
𝜇𝑖
∇𝜓 = 𝜌

𝜌𝑖
𝑘
𝜇∇𝑝 , (10.13)

and Eq. (10.12) and (10.13) may be combined to give the boundary
condition at the sand face (𝑟 = 𝑟𝑤). The result is

𝑘
𝜇𝑖
∇𝜓 = 𝑄𝑖

2𝜋𝑟𝑤ℎ
, (10.14)

where
𝑄𝑖 =

𝜌(𝑝)𝑄(𝑝)
𝜌𝑖

= 𝑄𝑚
𝜌𝑖

= 𝜌𝑠
𝜌𝑖
𝑄𝑠 = 𝐵𝑔𝑖𝑄𝑠 . (10.15)

We see from Eq. (10.2), (10.11), and (10.14) that a well test in a gas
reservoir can be analyzed using the same methods as for oil wells by
replacing pressure with pseudo pressure, and using the values at ini-
tial reservoir pressure for viscosity and gas reservoir volume factor.
The diffusivity is, on the other hand, evaluated at the pressure at the
start of the test, which may be different from the initial pressure.

10.2.1 Two-rate drawdown–buildup sequences

Flow rates in gas wells are often so large that non-Darcy (turbulent)
pressure drops must be accounted for. The measured skin, 𝑆′, is then

𝑆′ = 𝑆 + 𝐷𝑄𝑠 , (10.16)

where 𝑆 is the normal skin factor, while 𝐷𝑄𝑠 is a rate-dependent skin
termwith𝐷 a coefficient for the rate𝑄𝑠. In order to determine the two
skin components, a multi-rate test is needed. An example of a multi-
rate test is two drawdown–buildup sequences with different rates as
illustrated in Fig. 10.2. If the first buildup is long enough for the pres-

Figure 10.2: Two rate test with in-
dependent drawdown–buildup se-
quences.

sure to recover to the initial value 𝑝𝑤𝑖, that is

𝛥𝑡1 > 𝑡𝑝1 , (10.17)

we have two build-ups that can be analyzed independently using the
Horner plot (page 40). The Horner analysis give two independent per-
meability estimates and two skin estimates

𝑆′1 = 𝑆 + 𝐷𝑄𝑠1 and 𝑆′2 = 𝑆 + 𝐷𝑄𝑠2 . (10.18)
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Figure 10.3: Fingering of gas during
well clean up.

Variable rate plots are similar to
Horner plots.

Given these two skin estimates the two components of the skin are

𝑆 = 𝑆′1𝑄𝑠2 − 𝑆′2𝑄𝑠1
𝑄𝑠2 − 𝑄𝑠1

𝐷 = 𝑆′2 − 𝑆′1
𝑄𝑠2 − 𝑄𝑠1

. (10.19)

10.2.2 Step rate test

In gas wells the mobility ratio of gas and drilling-mud is highly unfa-
vorable. As a result, gas have a tendency to finger through the mud
filtrate (see Fig. 10.3), andwell clean up by productionmay take a long
time. The resulting time dependent skin may invalidate well test re-
sults, in particular skin estimates. A multi-rate test with more than
two rates provides data redundancy which can be used for detecting
insufficient clean up and improve data quality.

A step rate test is a test where the rate is increased in steps, as
shown in Fig. 10.4, and at least three steps are needed in order to
get the necessary redundancy in the skin estimates. Below we will
derive a method for analyzing the four flow periods in a three-rate
step rate test. The method involves plots that are similar to Horner
plots (see page 40), and the derivation is based on superposition. The
Horner plot is actually a special case of these variable rate plots, and
the method can easily be generalized to any number of rate steps.

Figure 10.4: Step rate test with 3
drawdown periods, DD1, DD2 and DD3,
and a final build-up.

The expected infinite acting pressure for each of the four test
periods is found by superposition, that is the variable rates in the
well is replaced by superposition of four constant-rate pseudo-wells
starting at different times. The first pseudo-well has a contribution
(Eq. (3.29)):

𝜓(𝑝𝑖) − 𝜓(𝑝)1 =
𝑄𝑠1
𝑄𝑠3

𝑚(ln ( 𝑡𝑡0
) + 𝑎 + 2𝑆′) , (10.20)

where
𝑚 =

𝑄𝑠3𝐵𝑔𝑖𝜇𝑖
4𝜋𝑘ℎ , (10.21)

𝑎 = ln ( 4𝑘
𝜙𝑐𝑡𝜇𝑟2𝑤

𝑡0) − 𝛾 , (10.22)

and 𝑡0 is an arbitrary time unit conventionally set to 1ℎ = 3600𝑠. Note
that, as discussed on page 111, all rates are surface rates, and the
product 𝑐𝑡𝜇 in Eq. (10.22) is evaluated at the start of the test, while
the product 𝐵𝑔𝑖𝜇𝑖 in Eq. (10.21) is evaluated at initial reservoir pres-
sure. The contribution for the other pseudo-wells are

𝜓(𝑝𝑖) − 𝜓(𝑝)𝑛 =
𝑄𝑠𝑛 − 𝑄𝑠𝑛−1

𝑄𝑠3
𝑚(ln (𝑡 − 𝑇𝑛

𝑡0
) + 𝑎 + 2𝑆′) . (10.23)
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Figure 10.5: Variable rate buildup plot
is used for permeability estimate. The
horizontal axis is a transformed time
given by Eq. (10.25).

Figure 10.6: Step rate semilog plot
for estimating rate dependent skin.
All drawdown periods (DD1, DD2,
and DD3, see Fig. 10.4) are fitted to
straight lines with a common slope.
The horizontal axis is a transformed
time given by Eq. (10.28)

Figure 10.7: Skin vs. rate plot for
estimating the components of rate
dependent skin

We will get the best permeability estimate from the final buildup
period. By adding all the contributions to the well pressure
(Eq. (10.20) and (10.23)) we get

𝜓(𝑝𝑖) − 𝜓(𝑝) = 𝑚𝑓4(𝑡) , (10.24)

where

𝑓4(𝑡) =
𝑄𝑠1
𝑄𝑠3

ln ( 𝑡
𝑡 − 𝑇1

) + 𝑄𝑠2
𝑄𝑠3

ln ( 𝑡 − 𝑇1
𝑡 − 𝑇2

) + ln (𝑡 − 𝑇2
𝑡 − 𝑇3

) . (10.25)

We see from Eq. (10.24), that if we plot the pseudo pressure as a func-
tion of the log-time like variable 𝑓4(𝑡), we get a straight line with slope
m, as shown in Fig. 10.5. Note the similarity with the Horner plot.

The permeability is estimated from the slope𝑚 (Eq. (10.21)):

𝑘 =
𝑄𝑠3𝐵𝑔𝑖𝜇𝑖
4𝜋ℎ

1
𝑚 . (10.26)

We see from Eq. (10.25) that 𝑓4(∞) = 0, so 𝑓4 = 0 corresponds to infi-
nite time. Thus, just as for theHorner plot, the average reservoir pres-
sure can be found based on the extrapolated pressure, 𝜓∗, using the
MBH-correction as explained onpage 60. For a gas reservoir, reservoir
volumemay also be estimated based on the corresponding depletion,
and known total production, using mass balance.

By adding all the active contributions to the well pressure we get
the following expression for the nth drawdown period

𝑄𝑠3
𝑄𝑠𝑛

(𝜓(𝑝𝑖) − 𝜓(𝑝)) = 𝑚 (𝑓𝑛(𝑡) + 𝑎 + 2𝑆) , (10.27)

with

𝑓1(𝑡) = ln ( 𝑡𝑡0
)

𝑓2(𝑡) =
𝑄𝑠1
𝑄𝑠2

ln ( 𝑡
𝑡 − 𝑇1

) + ln (𝑡 − 𝑇1
𝑡0

)

𝑓3(𝑡) =
𝑄𝑠1
𝑄𝑠3

ln ( 𝑡
𝑡 − 𝑇1

) + 𝑄𝑠2
𝑄𝑠3

ln ( 𝑡 − 𝑇1
𝑡 − 𝑇2

) + ln (𝑡 − 𝑇2
𝑡0

)

. (10.28)

Each of the three drawdown periods will give estimates for total ef-
fective skin 𝑆′𝑛 = 𝑆 + 𝐷𝑄𝑠𝑛. We see from Eq. (10.27) that the scaled
pseudo-pressures, 𝑄𝑠3

𝑄𝑠𝑛
(𝜓(𝑝𝑖) − 𝜓(𝑝)), should be straight lineswith the

same slope,𝑚, when plotted as a function of 𝑓𝑛(𝑡). The slope is known
from analyzing the buildup, thus each line should be fitted with one
parameter (the intercept) while forcing the slope. All periods are typ-
ically plotted on the same plot, as shown in Fig. 10.6, and if the actual
slope on early periods is not 𝑚 it indicates insufficient clean-up, or
other problems.

The effective skins, 𝑆′𝑛 = 𝑆 + 𝐷𝑄𝑠𝑛, are estimated from the inter-
cepts, 𝐶𝑛 (Eqs. (10.27) and (10.22)):

𝑆′𝑛 =
𝐶𝑛
2𝑚 − ln ( 4𝑘𝑡0

𝜙𝑐𝑡𝜇𝑟2𝑤
) + 𝛾 . (10.29)

The effective skin is a linear function of rate (Eq. (10.16)), so if we
plot the effective skin as a function of rate as in Fig. 10.7, and fit to a
straight line, the intercept is 𝑆 and the slope is 𝐷. Again, if the first
period(s) are not on a line it is an indication of insufficient clean-up,
or other problems.
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The pseudo time function, 𝑡𝑎(𝑡), is a
function of pressure history.

10.3 Pseudo time

In the analysis with pseudo pressure above (see 111), we assumed that
the pressure change during the test period was so small that 𝑐𝑡𝜇 could
be treated as a constant. If the maximum pressure change in the test
period is to large, then the product 𝑐𝑡𝜇 cannot be treated as a con-
stant. In particular, this could be a problem for extended tests in tight
reservoirs.

In the case when 𝑐𝑡𝜇 cannot be treated as a constant, the differen-
tial equation for pseudo pressure can approximately be expressed as

𝑘∇2𝜓 = 𝜙𝑐𝑡𝑖𝜇𝑖
𝜕
𝜕𝑡𝑎

𝜓 , (10.30)

when time is replaced by pseudo time, 𝑡𝑎, which is defined as

𝑡𝑎 = 𝜇𝑖𝑐𝑡𝑖∫
𝑡

𝑡0

1
𝜇(𝑡′)𝑐𝑡(𝑡′)

𝑑𝑡′ . (10.31)

The linear equation for pseudo pressure using pseudo time (10.30) is
simply derived by inserting Eq. (10.31) into Eq. (10.3). The equation
is at best only approximately correct since 𝑡𝑎 is a function of pres-
sure history, and thus different at different points in space, while the
spatial derivative on the left hand side in Eq. (10.30) is evaluated at
constant time. Fortunately, numerical experiments show that the ap-
proximation may be accurate for well testing purposes.

The pseudo time is a monotonous function of time, but it is a func-
tion of pressure history, and thus not a pure fluid property. Unlike
pseudo pressure, the pseudo time function is different for each well
test, and since 𝑡𝑎(𝑡) is space dependent, the question of which pres-
sure history should be used arise. In addition, the formulation does
not honor material balance. A full numerical simulation should al-
ways be performed in order to quality check results obtained using
the pseudo time formulation, and matching the measurements with
simulation may be more appropriate in cases with significant pres-
sure changes. Estimates based on pseudo time will in any case serve
as good starting values for the final matching process.





11
Multiphase flow

In reservoirs with pressure support from an aquifer or gas cap, and
when well testing is used for reservoir monitoring of water or gas
flooded reservoirs, the understanding of multiphase flow effects will
be important for the interpretation of well tests. In this chapter we
will, however, not investigate these situations. Here we will discuss
the testing of wells where a two-phase region develops in the near
well region. This situation will usually occur in gas condensate reser-
voirs and in oil reservoirs at or near the bubble point. We will also
not investigate well testing in situations were, during the test or as a
result of prior production, the reservoir is depleted such that a two-
phase situation develops in the whole reservoir.

The phase diagram of the reservoir fluid in a gas condensate reser-
voir is shown in Fig. 11.1. A two phase region will develop close to the

Figure 11.1: Phase diagram of gas-
condensate reservoir fluid. At initial
pressure the fluid is in a supercritical
single phase. The two phase region is
entered and liquid drops out when the
pressure is reduced to the dew point
pressure.

well whenwell pressure falls below the dew point pressure. Since flow
depend on relative permeability, the two phase region has reduced to-
tal mobility, which introduce an extra contribution to skin. However,
the two phase region is also highly dynamic; it grows in size, satura-
tions are changing, and the composition of gas and liquid will change
while producing. Relative permeability in the two phase region will
change due to the dynamic saturation, and in a condensate reservoir
relative permeability may also depend on composition which is also
changing. The pressure and saturation profile around a well in a gas
condensate reservoir is illustrated in Fig. 11.2.
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Figure 11.2: Pressure profile around
a well below dew point pressure. In
the liquid drop out (two phase) zone
there is a larger pressure drop than
in a corresponding single phase zone
(dashed line).

Figure 11.4: Radial composite model

The phase diagram of the reservoir fluid in an oil reservoir is shown
in Fig. 11.3. A two phase region will develop close to the well when

Figure 11.3: Phase diagram of oil
reservoir fluid. At initial pressure
the fluid is one phase liquid. The
two phase region is entered and gas
appears when the pressure it reduced
to the bubble point pressure.

well pressure falls below the bubble point pressure. The two phase
region is also in this case dynamic, and additionally mobile gas out-
side the immediate near well region may segregate. The composition
of the produced fluids (surface gas oil ratio, and 𝑅𝑠 of the reservoir
liquid) will consequently not be constant during the test.

Due to the complications mentioned above, results based on well
test analysis should always be checked with a “full-physics” simula-
tion (see page 125). These simulationsmust allow for possible gravity
segregation for oil and compositional changes for condensate.

11.1 Radial composite

Build-up tests and multi rate tests can often be analyzed in terms of
the simple radial composite model. As shown in Fig. 11.4, the radial
composite model has an inner region near the well with altered prop-
erties, representing the two-phase region, and an outer region with
the original single-phase properties.

The fundamental response of a radial composite is shown Fig. 11.5.
At early times the pressure front will travel through the inner region,
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Figure 11.5: sketch of the fundamental
response of a radial composite model
with mobility ratio𝑀 = 𝑘2

𝜇2
𝜇1
𝑘1

> 1.

Drawdown does not behave as a radial
composite.

and on the pressure vs. ln(𝑡) plotwewill see a straight linewith a slope
that reflects the inner region properties. At late times the front travels
in the outer region, andwewill see a straight line with a reduced slope
reflecting the properties of the outer region. The corresponding log-
log derivative plot for the fundamental response is shown in Fig. 11.6.
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100
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/𝑑
(ln
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Figure 11.6: Log-log derivative plot of
the fundamental response of a radial
composite model.

The initial drawdown period in any drawdown test has a highly dy-
namic inner zone and does not behave as a radial composite. Due
to the changing composition, it is also difficult to maintain a con-
stant rate. On the other hand, we will see below that buildup and
well designed step-rate tests may see radial composite at the pres-
sure front. Other tests may also show behavior that are reminiscent
of radial composite, but the model can not be used for quantitative
analysis.

Pressure profiles during a build up test are illustrated in Fig. 11.7.
Wewill assume that the production period, 𝑡𝑝, is of sufficient length so
that a near steady state profile has developed in the near well region,
and that the changes in the pressure profile during the test is dom-
inated by the shut-in (that is by the negative rate well in the super-
position picture). Since the pressure front travels through the inner
two-phase region at early times, the early-time step response reflects
the properties of the two-phase region. Similarly, since the pressure
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Figure 11.7: Pressure profiles during
buildup. Note that the pressure front
travels through the two-phase region
as long as well pressure is below
bubble-point pressure, and through the
single phase region at later times.

Effective skin include reduced mobility
in the near well two-phase region.

Figure 11.8: Example of a step rate
schedule.

front travels through the outer single-phase region at later times, the
late-time response reflects the single phase properties. The fact that
the two phase-region disappears when well pressure rise above bub-
ble point pressure will represent a reduced skin at this point, but this
is irrelevant since the rate is zero.

Analysis of the early part of the build-up test will give estimates for
the effective mobility in the two phase region, the time of the transi-
tion can be used to estimate the size of the two-phase region, and the
late part yield estimates for formation permeability and effective skin.
The reduced mobility in the near well two-phase region contribute to
an increased skin, so the measured effective skin has three contribu-
tions: The altered permeability in the near wellbore region (normal
skin), reduced mobility in the near well two-phase region, and, in gas
condensate reservoirs, an extra pressure drop due to high-rate turbu-
lent flow close to the well. The last contribution is rate dependent,
and the second is dynamic, so any detailed analysis of skin require a
multi rate test.

An example of a step rate test is shown in Fig. 11.8, and this test
has been discussed for gas reservoirs on page 113. We will analyze
the response to a rate change, and again assume that the previous
production period is of sufficient length so that a steady state pres-
sure profile has been developed in the near well region. The devel-
opment of the pressure profile is illustrated in Fig. 11.9. Initially the
front travels in the two-phase region, and the response will reflect
the properties of this region, and the late-time response reflects sin-
gle phase with effective skin. Note that, since the rates in this case is
not zero, the change in two-phase region properties and size due to
the pressure changes represent a non-constant effective skin that will
influence the pressure response. The response is thus not completely
that of a radial composite. However, the dynamic skin effect will be of

the order (𝛥𝑡
𝑡𝑝
)
2
, and the rate schedule may be designed to minimize

its influence.
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Figure 11.9: Pressure profiles during
step rate test. Initially the pressure
front travels through the two-phase
region. The front travel through the
single phase region at later times.
Relative change in two-phase zone is
small during the test provided that the
initial production time is sufficiently
long.

Figure 11.10: Sketch of the ideal
relative mobility in the region around a
water injector.

1 For a discussion of Buckley-Leverett
displacement, see for instance L.P.
Dake. Fundamentals of Reservoir Engi-
neering. Developments in Petroleum
Science 8. Elsevier, 1978, page 356–
362, where the theory is developed for
1-dimensional linear flow. The radial
displacement near a water injector is
described by the same equations where
the distance 𝑥 is replaced by 𝑟2.

11.1.1 Well tests in water injectors

Water injectors may be tested in order to investigate how the injected
water displace oil. The composite radial model can in many cases be
used in order to understand and analyze these tests, as can be seen
from the mobility distribution shown in Fig. 11.10.

Ideally the near well region will comprise three regions with dif-
ferent total mobility: In the outer unflooded region the mobility will
be that of oil at initial water saturation, and since the flooding is of
Buckley-Leverett type1 there will be a sharp front with a step change
in water saturation. Behind this front we have a two-phase region
with reduced mobility. Since typically the injected water is much
colder than the reservoir the volume close to the well will be cooled,
and as cold fluids have higher viscosity than hot fluids the total mo-
bility is reduced in the near well region. Typically the viscosity is in-
creased by a factor≈ 4 for both oil and water at North-sea conditions.
In ideal one-dimensional or radial displacement the temperature dis-
tribution will be a sharp front which typically travels with a speed
≈ 1/3 of the saturation front. The temperature is constant (at injec-
tion temperature) behind the front. Due to heat flow to the rock above
and below the reservoir zone the real temperature front will however
typically be zone with gradual temperature change.

We have seen that the region around a water injector can be de-
scribed in terms of three zones with different mobility, and ideally
the mobility in each zone is approximately constant, so that a well
test may be analyzed in terms of a radial composite model. The sat-
uration behind the saturation front is however not exactly constant,
even for ideal Bucley-Leverett displacement (see Fig. 11.10), and in
real cases there will be some dispersion in the front location due to
reservoir heterogeneities. Since the temperature front is also typi-
cally a zone with gradual temperature change, the radial composite
analysis should not be expected to give very accurate results, but it
can serve as a good starting point for more detailed analysis.
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Pseudo pressure is defined provided
that total composition is constant.

11.2 Pseudo pressure and pseudo time

Well tests in gas reservoirs can in many cases be analyzed using the
methods developed for oil reservoirs provided the analysis is per-
formed in terms of pseudo-pressure (see page 109). We will now
show that the concept of pseudo-pressure, in the form of the so called
steady-state pseudo pressure, is approximately valid for both single
and two-phase flow.

Before any major approximations have been made, the general
equation for the pressure in the single phase case is Eq. (10.1), which,
in the two-phase situation, may be generalized to

∇ ⋅ ((
𝑘𝑟𝑔𝜌𝑔
𝜇𝑔

+ 𝑘𝑟𝑜𝜌𝑜
𝜇𝑜

)∇𝑝) = 𝜙
𝑘 𝑐𝑡(𝑝)𝜌(𝑝)

𝜕
𝜕𝑡𝑝 , (11.1)

where
𝑐𝑡 =

1
𝜙
𝑑𝜙
𝑑𝑝 + 1

𝜌
𝑑𝜌
𝑑𝑝

𝜌 = 𝑆𝑜𝜌𝑜 + 𝑆𝑔𝜌𝑔
. (11.2)

Eq. (11.1) is just an expression for the conservation of total mass.
If we assume that the total composition is constant, we may

uniquely define the following pseudo pressure

𝜓(𝑝) = 𝜇𝑖
𝜌𝑖
∫

𝑝

𝑝0
(
𝑘𝑟𝑔𝜌𝑔
𝜇𝑔

+ 𝑘𝑟𝑜𝜌𝑜
𝜇𝑜

) 𝑑𝑝′ , (11.3)

since density, saturation, and viscosity in that case is a function of
pressure only. The relative permeabilities are also functions of pres-
sure through the pressure dependent saturations. In practice we will
use an equation of state to define the pressure dependency of sat-
urations and densities, and the pressure dependency of viscosity is
determined by a tuned viscosity correlation.

The diffusivity equation for the pseudo pressure defined in
Eq. (11.3) is

∇2𝜓 = 𝜙𝜇𝑡(𝑝)𝑐𝑡(𝑝)
𝑘

𝜕
𝜕𝑡𝜓 , (11.4)

where

𝜇𝑡 = 𝜌(𝜌𝑜𝑘𝑟𝑜𝜇𝑜
+
𝜌𝑔𝑘𝑟𝑔
𝜇𝑔

)
−1

(11.5)

is the effective viscosity. This can be verified by substituting the def-
inition of the pseudo pressure (11.3) into Eq. (11.4).

The concept of pseudo pressure in a two-phase system assumes
constant composition in both time and space. This implies a con-
stant surface GOR, and a steady state profile where the saturation is a
function of distance from the well while the total composition is con-
stant. Both of these conditions are at best only approximately valid.
The right hand side of Eq. (11.4) is also, just as in the single-phase gas
case, a function of pressure, and we need to assume that the product
𝜇𝑡(𝑝)𝑐𝑡(𝑝) changes little during the test so that it may be treated as a
constant.

Pseudo pressure, effective viscosity, and total compressibility
should be evaluated using the composition of the production stream
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Two phase pseudo pressure is process
dependent.

2 J.R. Jones and R. Raghavan. “Inter-
pretation of Flowing Well Response
in Gas-Condensate Wells.” In: SPE
Formation Evaluation (Sept. 1988),
pp. 578–594. DOI : 10.2118/14204-PA.

at the start of the analyzed period. As a consequence, in contrast to
the single phase case, the steady state pseudo pressure is process de-
pendent. Note also that 𝜓(𝑝) depend on relative permeability, which,
in particular for gas condensate, is difficult to measure with high ac-
curacy. Relative permeability may also depend on rate, which trans-
late into a variation with distance from the well. All these concerns
calls for cautionwhen applying pseudo pressure. However, it has been
shown that the analysis of two-phase buildup tests can often bemade
to sufficient accuracy using pseudo-pressure and replacing 𝜇𝑡(𝑝)𝑐𝑡(𝑝)
with a constant.2

If themaximumpressure change in the test period is not small then
the product 𝜇𝑡(𝑝)𝑐𝑡(𝑝) cannot be treated as a constant. In these cases
we may also introduce pseudo time (see page 115). The two phase
pseudo-time 𝑡𝑎 is defined as

𝑡𝑎 = 𝜇𝑖𝑐𝑡𝑖∫
𝑡

𝑡0

1
𝜇𝑡(𝑡′)𝑐𝑡(𝑡′)

𝑑𝑡′ . (11.6)

Like in gas well testing, pseudo time is an uncontrolled approxima-
tion.

For well tests producing below bubble- or dew-point pressure, re-
sults based on pseudo pressure and pseudo time, or any other approx-
imate analytical theory, should always be quality checked using full
physics numerical simulations.

https://doi.org/10.2118/14204-PA
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12
Numerical methods

Analysis based on analytical solutions of simple models should al-
ways be the first pass in well test interpretation. However, analytical
models have limited applicability in real world situations with com-
plex well paths, non trivial geology, multiple interacting wells, and
multi-phase flow. In this chapter we will discuss how a well test can
be simulated, and the way such numerical simulations can be utilized
in the analysis in order to obtain estimates for reservoir parameters.

In general numerical simulations are necessary in a number of con-
texts:

• In the context of unknown and complex geometry, direct simula-
tions is used to test “what if” scenarios.

• Given the scenario, that is a geological concept that can be de-
scribed by a set of numerical parameters, simulation is combined
with automatic or manual parameter estimation.

• Simulation on models with increased complexity and additional
physics is used to validate results fromparameter estimation based
on simplified analytic or numerical models, or the model param-
eters from these simple models are used as starting points for
parameter estimation using the more complex simulation model.
Model validation is particularly important for multiphase flow.

• The analysis of well tests on wells with complex paths.

• Situations involving several wells, and in particular interference
testing, can usually only be adequately analyzed using numerical
simulations.

• Finally, it should be mentioned that simulations are used to ob-
tain type curves for complex geological concepts. Traditional type-
curvematching can then be performed using these type curves, see
page 104 for an example.

12.1 Well tests simulators

Commercial software packages for well test interpretation typically
include a well test simulator and a module for building suitable sim-
ulation grids. The complexity of the models that can be built, and the
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Finite elements vs. finite difference.

Linear diffusivity equation.

In finite element methods, the solution
is expressed in terms of local basis
functions, often called trial-functions.

ease of use may vary, but the first choice will be to use the provided
simulator as it should be well integrated with the other visualization
and interpretation tools. Conventional reservoir simulators can also
be used for simulating well test. These simulators are the most com-
plete with regards to reservoir flow-physics and phase behavior, but
are not tuned to solvingwell-test problems. Thus, creation of suitable
grids and providing correct boundary conditions can be challenging.
On the other end of the scale we have production technology oriented
“multi-physics” simulators, which can also be used to simulate well
tests. These simulators are coupled well–near-well-reservoir simula-
tors that give an accurate description of flow in the completions and
wellbore, including details in the inflow to the well, but they typi-
cally have limited capabilities regarding the representation of reser-
voir geology, and additionally they tend to be very computationally
inefficient.

Based on which differential equations that are solved, simulators
may be divided into four classes: Simulators that solve the linear dif-
fusivity equation, those that solve the non-linear diffusivity equation,
black-oil simulators, and compositional simulators. A given simula-
tor program may include more than one of these in the same pack-
age. The simulators may also be categorized according to the way
the equations are discretized, either by finite elements or by control-
volume finite difference methods.

The linear diffusivity equation,

∇ ⋅ (𝐾 ⋅ ∇𝜓) − 𝑐𝑡𝜇
𝜕
𝜕𝑡𝜓 = 0 , (12.1)

is the equation that all the analytical analysis methods are based on,
and, with 𝜓(𝑝) being the pseudo pressure, it is universally applicable
for single phase well tests as long as the total pressure change dur-
ing the test is not too large. In Eq. (12.1), 𝐾 is the space dependent
permeability tensor, and the purpose of the well test is, in a general
sense, to characterize the permeability field 𝐾, i.e. the reservoir. A
numerical solution of Eq. (12.1) is needed whenever the reservoir has
a complex shape or permeability distribution, or when the well path
or completion pattern is non-trivial. Finite element discretisation is
more suited than finite difference for complex geometries, as it is eas-
ier to create grids that follow general complex shapes, so simulators
that solve the linear (and also non-linear) diffusivity equation are of-
ten finite element based.

In a finite element discretisation the solution is approximately ex-
pressed as a sum of basis functions, 𝜙𝑛,

𝜓(𝑡, 𝑥) = ∑
𝑛
𝑎𝑛(𝑡)𝜙𝑛(𝑥) . (12.2)

Each basis function is localized around a node in the grid as shown
in Fig. 12.1, and different finite element methods differ in terms of
the shape of the selected basis functions. If we insert Eq. (12.2) into
Eq. (12.1), we get

∑
𝑛
𝜙𝑛

𝑑
𝑑𝑡𝑎𝑛 −

1
𝑐𝑡𝜇

∑
𝑛
𝑎𝑛∇ ⋅ (𝐾 ⋅ ∇𝜙𝑛) = 0 . (12.3)
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Figure 12.1: Example of basis func-
tions (elements) for finite element
discretization of a two-dimensional
domain. Note that the simple pyramid
shaped elements shown here may be
to simple for accurate simulation,
and higher order elements are used in
actual simulators.

Projections onto a second set of local
basis functions, the test functions,
transform the partial differential
equation into a system of ordinary
differential equations.

We now introduce a second set of basis functions, 𝜙∗𝑛. Note that the
the two sets are usually identical, but they need not be and sometimes
lower order functions are used for this second set than for the first
set. If we multiply Eq. (12.3) with each function in the second set
and integrate over all space, we get the following system of equations
expressed on matrix form

𝐴 ⋅ 𝑑𝑑𝑡𝑎 −
1
𝑐𝑡𝜇

𝐵∗ ⋅ 𝑎 = 0 , (12.4)

where
𝐴𝑚𝑛 = ∫𝜙∗𝑚𝜙𝑛 𝑑𝑉 , (12.5)

and
𝐵∗𝑚𝑛 = ∫𝜙∗𝑚∇ ⋅ (𝐾 ⋅ ∇𝜙𝑛) 𝑑𝑉 . (12.6)

The above expression for the matrix 𝐵∗ (Eq. (12.6)), contains
derivatives of the permeability, and second derivatives of the basis
functions. However, since the reservoir is modelled in terms of re-
gions with different properties, and since the derivative of the basis
functions are usually not continuous (see for instance Fig. 12.1), the
integrand will contain 𝛿-function type terms. We would prefer an ex-
pression that contain first derivatives only, and we will also see that
as an additional bonus we will get an expression where flow boundary
conditions can be implemented in a very natural manner.

We can apply the divergence theorem to transform a volume inte-
gral to a surface integral over the outer boundaries

∫∇ ⋅ (𝜙∗𝑚 ⋅ 𝐾 ⋅ ∇𝜙𝑛) 𝑑𝑉 = ∫𝜙∗𝑚𝐾 ⋅ ∇𝜙𝑛 ⋅ 𝑑𝑆 . (12.7)

We may also apply the chain rule for derivation:

∫∇⋅(𝜙∗𝑚 ⋅ 𝐾 ⋅ ∇𝜙𝑛) 𝑑𝑉 = ∫∇𝜙∗𝑚⋅𝐾⋅∇𝜙𝑛 𝑑𝑉+∫𝜙∗𝑚∇⋅(𝐾 ⋅ ∇𝜙𝑛) 𝑑𝑉 .
(12.8)

Combining Eqs. (12.7) and (12.8) gives

∫𝜙∗𝑚∇⋅(𝐾 ⋅ ∇𝜙𝑛) 𝑑𝑉 = −∫∇𝜙∗𝑚 ⋅𝐾 ⋅∇𝜙𝑛 𝑑𝑉+∫𝜙∗𝑚𝐾 ⋅∇𝜙𝑛 ⋅𝑑𝑆 , .
(12.9)
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The pressure change during a time step
is calculated by solving a sparse linear
system of equations.

the matrix elements 𝐴𝑚𝑛 and 𝐵𝑚𝑛 are
non-zero only where the functions 𝜙∗𝑚
and 𝜙𝑛 overlap

Flexible gridding to complex geometry
and well paths is the major strength of
the finite element discretisation.

and substituting Eq. (12.9) for Eq. (12.6) in Eq. (12.4) gives

𝐴 ⋅ 𝑑𝑑𝑡𝑎 +
1
𝑐𝑡𝜇

𝐵 ⋅ 𝑎 = 𝑏 , (12.10)

where

𝑏𝑚 = 1
𝑐𝑡
∫𝜙∗𝑚

1
𝜇𝐾 ⋅ ∇∑

𝑛
𝑎𝑛𝜙𝑛 ⋅ 𝑑𝑆 =

1
𝑐𝑡
∫𝜙∗𝑚 𝑞 ⋅ 𝑑𝑆 , (12.11)

and
𝐵𝑚𝑛 = −∫∇𝜙∗𝑚 ⋅ 𝐾 ⋅ ∇𝜙𝑛 𝑑𝑉 , (12.12)

We have seen that by introducing two sets of localized basis func-
tions, {𝜙𝑛(𝑥)} and {𝜙∗𝑛(𝑥)}, the partial differential equation (12.1) is
transformed into an system of ordinary differential equations for the
coefficients 𝑎𝑛(𝑡) (Eq. (12.10)). The right hand side of this system
of equations are determined by the flux across the boundaries. Flux
boundary conditions, such as a given well rate, are thus straight for-
ward to implement. Other boundary conditions, such as constant
pressure, can of course also be implemented, but we will not go into
any detail here.

The system of differential equations (12.10) is solved by time-
stepping, that is the coefficient vector at time 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡 is calcu-
lated by solving a systemof linear equationswhere the coefficients are
calculated based on the vector at 𝑡𝑛. An implicit time stepping scheme
has to be applied, and we will use the Crank–Nicholson scheme as an
example. In that case the time-discretized Eq. (12.10) is

𝐴 ⋅ (𝑎(𝑡
𝑛+1) − 𝑎(𝑡𝑛)

𝛥𝑡 ) + 1
𝑐𝑡𝜇

𝐵 ⋅ (𝑎(𝑡
𝑛+1) + 𝑎(𝑡𝑛)

2 ) = 𝑏(𝑡𝑛) , (12.13)

which correspond to the following set of linear equations

(𝐴 + 𝛥𝑡
2𝑐𝑡𝜇

𝐵) 𝑎(𝑡𝑛+1) = (𝐴 − 𝛥𝑡
2𝑐𝑡𝜇

𝐵) 𝑎(𝑡𝑛) + 𝑏𝛥𝑡 . (12.14)

We see from Eqs. (12.5) and (12.12) that the matrix elements 𝐴𝑚𝑛
and 𝐵𝑚𝑛 are non-zero only if the functions 𝜙∗𝑚 and 𝜙𝑛 overlap, so since
the basis functions are local, these matrices are sparse, and the num-
ber of non-zero elements is proportional to the number of grid nodes.
The matrices are also independent of time, implying that they only
need to be evaluated once for all time steps.

The finite element method is extremely flexible in terms of grids.
Note also that the reservoir properties (e.g., 𝐾) is not expressed in
terms of the basis functions, so they can have an independent grid
representation, adding an additional level of flexibility.

If the maximum pressure change in the test period is too large
then the product 𝑐𝑡𝜇 cannot be treated as a constant. This is espe-
cially acute for extended tests in gas reservoirs. Introducing pseudo
time can provide some insight, but analysis that employ full numeri-
cal simulation should be considered asmandatory (see page 115). It is
clearly necessary to perform the simulations using pseudo pressure.
The diffusivity equation,
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Non-linear diffusivity equation

1 This is reminiscent of the IMPES
(Implicit pressure Explicit saturation)
type of formulations much used in
reservoir simulation.

Full physics simulators

Finite difference control volume
discretisation

The grid consist of grid blocks, and all
reservoir properties, both static and
dynamic live on the same grid.

∇ ⋅ (𝐾 ⋅ ∇𝜓) − 𝑐𝑡(𝑝)𝜇(𝑝)
𝜕
𝜕𝑡𝜓 = 0 , (12.15)

is nownon-linear. However, if the 𝑐𝑡(𝑝)𝜇(𝑝)-product does not change
much over short time periods, it can be treated explicitly in time step-
ping. Since the pseudo-pressure analysis works for short tests, ex-
plicit time stepping is a good approximation inmany cases. Note that
the pressure should be solved using some level of implicit time step-
ping, this is uncoupled to the treatment of the 𝑐𝑡𝜇 product.1 If we
in addition assume that the 𝑐𝑡𝜇 product varies little over each over-
lap area, then it can be treated as a constant in the integration, and
Eq. (12.14) becomes

(𝐴 + 𝛥𝑡
2 𝐵

′) 𝑎(𝑡𝑛+1) = (𝐴 − 𝛥𝑡
2 𝐵

′) 𝑎(𝑡𝑛) + 𝑏𝛥𝑡 . (12.16)

where

𝐵′𝑚𝑛(𝑝) = 𝛽𝑚𝑛𝐵𝑚𝑛 and 𝛽𝑚𝑛 =
1

𝑐𝑡(𝑝, 𝑥𝑚𝑛) 𝜇(𝑝, 𝑥𝑚𝑛)
. (12.17)

We see that a finite element simulation is just marginally more
computationally demanding in the case of a pressure dependent 𝑐𝑡𝜇
product compared to the linear case, provided that pseudo-pressure
is used and we have an efficient way of calculating 𝑐𝑡(𝑝) and 𝜇(𝑝).

In situations with dynamic two-phase flow, such as production be-
low the bubble- or dew-point pressure in oil or condensate reservoirs,
simulations based on the diffusivity equation are not sufficient. For-
mulations that take changes in saturation or composition into ac-
count, implemented in “full physics” simulators, are needed. These
simulators are either black-oil, which is sufficient for oil reservoirs,
or compositional, which are usually needed in condensate reservoirs.

Full physics simulators invariably employ finite difference control
volume discretisation, which is the class of discretisation used by all
major commercial reservoir simulators. In this formulation space is
divided into grid blocks (control volumes), and a mass balance equa-
tion is written for each of these. Each grid block is assumed to be in
thermodynamic equilibrium so that the properties are spatially con-
stant, and the saturation and composition of each phase is a func-
tion of total composition and pressure through an equation of state.
Reservoir properties are also discretized using the same grid, with a
single value of permeability and porosity for each block. The flux of
each phase between grid blocks are normally determined by the pres-
sure difference between the blocks and by the saturation (relative per-
meability) in the upstream block. This is called the two-point flux ap-
proximation with upstream weighting. Multi-point flux approxima-
tions, where the flux between two grid blocks depends on the pressure
in additional neighboring blocks, are sometimes also implemented.
These multi-point flux approximations reduce the grid-orientation
effect, which in particular cases can severely damage the accuracy of
multi-phase simulations, but are nevertheless in little use and not all
simulators implement them.
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Figure 12.2: Example illustrating
orthogonality of grid blocks.

The inverse Laplace transform is calcu-
lated using the Stehfest algorithm.

The finite difference discretisation is much more restricted with
respect to gridding than the finite element methods. In particular,
grid blocks need to be orthogonal, that is that grid block faces must
be orthogonal to the line connecting grid centers. This is illustrated in
Fig. 12.2. Often simple shoe-box shaped grid-blocks are used, but in
general these orthogonal grids are called PEBI-grids or Voronoi-grids.
In spite of the limitations on gridding imposed by the finite difference
discretisation, tools delivered with specialist well-test simulators are
in many cases able to create good orthogonal grids as illustrated in
Fig. 12.3.

Figure 12.3: Example of a finite dif-
ference PEBI-grid with refinements
around wells.

Some vendors supply a unified simulation framework where finite
difference discretisation is used throughout, even for problems where
the linear diffusivity equation is applicable.

12.1.1 Laplace finite element, and the Stehfest algorithm

As an alternative to time stepping, the linear diffusivity equation can
be solved in Laplace space:

∇ ⋅ (𝐾 ⋅ ∇𝜓(𝑠, 𝑥)) − 𝑐𝑡𝜇 𝑠𝜓(𝑠, 𝑥) = 0 . (12.18)

If we discretize by finite elements in space, we get the Laplace space
analogue of Eq. (12.10):

(𝑠𝐴 + 1
𝑐𝑡𝜇

𝐵) ⋅ 𝑎(𝑠) = 𝑏(𝑠) . (12.19)

This sparse linear system must be solved to get the solution for a
given 𝑠. If we were to numerically invert 𝜓(𝑠, 𝑥) by numerically eval-
uating an integral for each needed 𝑡, then this method would have
been forbiddingly numerically demanding. Luckily, Laplace trans-
forms of monotonously decaying functions (especially functions with
exponential decay) can be accurately inverted for a given 𝑡 based on
transformed function values at a small number of 𝑠 by the Stehfest al-
gorithm. In well testing the fundamental solutions have the desired
properties, and the Stehfest algorithm have extensively been applied
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2 P.P. Valkó and J. Abate. “Compari-
son of Sequence Accelrators for the
Gaver Method of Numerical Laplace
Transform Inversion.” In: Comput-
ers and Mathematics with Applica-
tions 48 (2004), pp. 629–636. DOI :
10.1016/j.camwa.2002.10.017.
3 The names Gaver-Stehfest algorithm
and Salzer summation is also used.

4 ⌊𝑥⌋ is the largest integer less than
or equal to 𝑥, and (𝑚

𝑛
) is the binomial

coefficient.

to well test problems were the Laplace transform is known on closed
form, but no explicit inverse transform has been found. The Laplace
finite element in conjunction with the Stehfest algorithm can thus be
an attractive option, at least for obtaining fundamental solutions in
complex geometries and geologies. More complex well test responses
can then be found by superposition of fundamental solutions.

A number of algorithms for numerical inversion of the Laplace
transform do exist, but no single algorithm is suitable for all prob-
lems. In the Laplace finite element method, the calculation of 𝜓(𝑠)
require solving a large system of linear equations, implying that any
inversionmethod that require a large number of𝜓(𝑠) values to be eval-
uated will be highly inefficient. Additionally values for 𝜓(𝑠) are only
available for real 𝑠. Numerical inversion of the Laplace transform is
thus a hard problem, and it is especially difficult if we are seeking
algorithms where only a small number of values for real 𝑠 suffice to
calculate a reasonable inverse for a given 𝑡. A family of algorithms for
this type of problems are based on the so called Gaver functionals,2

and among these it is the Stehfest algorithm3 that is commonly used
in the well-testing context. We will not even attempt to derive the
Stehfest algorithm here, but the result is that the solution at a given 𝑡
is found as a linear combination of the Laplace solution at a series of
specific 𝑠:

𝜓(𝑡) ≈ ln(2)
𝑡

2𝑁
∑
𝑛=1

𝜔𝑛(𝑁) ⋅ 𝜓 (
𝑛 ln(2)

𝑡 ) , (12.20)

where4

𝜔𝑛(𝑁) = (−1)𝑁+𝑛
min(𝑛,𝑁)
∑

𝑖=⌊((𝑛+1)/2⌋

𝑖𝑁+1

𝑁! (
𝑁
𝑖 )(

2𝑖
𝑖 )(

𝑖
𝑛 − 𝑖) . (12.21)

The series in Eq. (12.20) converges to the exact solution with an
increasing number of terms. The convergence can, however, be very
slow. Additionally, the coefficients 𝜔𝑛 have alternating sign, so that
extended precision arithmetic is necessary in the calculation if more
than a few terms are needed. Using standard double precision arith-
metic the maximum number of terms is 7. Extended precision arith-
metic, which is implemented in software, is computationally much
more demanding than double precision, which is implemented in the
CPU hardware. However, it is easy to implement in the Stehfest algo-
rithm itself, and for situations where the Laplace solution is explic-
itly known the inversion should always be performed using extended
precision. In Laplace finite element the Laplace solution is only avail-
able at a precision given by the finite element code. This is typically
at double precision, and implementing the finite element method us-
ing extended precision is not feasible. Fortunately, experience show
that the maximum of 7 terms available for double precision is usually
sufficient at least for the monotonous fundamental solutions found
in the well testing context.

The main advantage of the Laplace finite element method is that
the calculation cost is proportional to the number of time values we

https://doi.org/10.1016/j.camwa.2002.10.017
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Type curve matching is attractive for
models with few parameters.

are actually interested in. When the diffusivity equation is solved
by traditional time stepping the calculation cost is proportional to
the number of time steps. Since accuracy is determined by time step
length, 𝛥𝑡, efficient automatic time step control is an issue, but the
number of time steps taken is typicallymuch larger than the ones that
we actually need in order to perform the well test analysis. Also, in
the initial transient period 𝛥𝑡must be very small, and if we aremainly
interested in late time behavior we still have to time-step the solution
all the way from 𝑡 = 0.

12.2 Parameter estimation

The purpose of the well test, and the well test analysis is to charac-
terize the reservoir. In practice this means to find numerical param-
eters related to conceptual models of the reservoir, i.e., parameters
such as permeability, distance to faults, etc. Analysis based on ana-
lytical solutions of simple models should always be the first pass, but
more often than not, the reservoir itself and our conceptual models
are too complex to be accurately represented by the models where we
have analytical solutions. In these cases, simulations using awell test
simulator will be an integral part of the well test analysis. The simu-
lator can be utilized in two different approaches. The first approach
is to run a number of simulations to generate type curves for a spe-
cific scenario. The second approach is to include simulation runs in
the inner loop of an automatic parameter matching, or optimization,
procedure. The numeric model used in the well test analysis must
correspond to a geological concept, and this concept should have as
few parameters as possible. The parameters should be transferable to
parameters used, either directly or for conditioning, in the full field
geological model, but it is normally not recommended to use well test
data directly in conditioning these models.

Type curve matching is a proven method that historically has had
a wide use in well test analysis, and the method is well supported in
well test analysis software. Type curve matching is based on a model
with a small number of parameters, and a set of curves, typically for
pressure and pressure derivative, have been created for selected pa-
rameter settings. The curves are typically generated in terms of di-
mensionless time and pressure, and sometimes also in terms of other
dimensionless groups, so that the actual measured time and pres-
sure and must be scaled. This scaling may include some of the un-
known parameters. The matching process simply involves comparing
the scaled measured data with the type curves, adjusting the scaling,
and finding the curve that is closest to the measured. An example of
type curve matching was briefly discussed on page 104, with an ex-
ample given in Fig. 9.12. Note that, just as for the analytic methods,
the actual response can be divided into time periods, and different
type curves used for the analysis of each time period. The matching
process can be manual, and purely visual, or a numerical matching
measure can be defined and the matching process can be assisted by
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The mismatch function is a measure
for the difference between the simu-
lated and the measured response.

Bayes theorem: The updated proba-
bility of a parameter set after we have
made measurements 𝑝({𝜆}|{𝑀}) is
proportional to the product of the
probability assigned to the set be-
fore the measurement 𝑝({𝜆}) and the
probability that a measurement will
give the measured values given the
parameter set 𝑝({𝑀}|{𝜆}).

an optimization algorithm.
Well testing software typically come with a large set of type curves

preloaded, and matching to these are well integrated in the software.
In addition, type curves can also be found in the literature, but in
many cases no curves exist that correspond to the geological concept
at hand. In these cases it can be an option to use a well test simula-
tor to generate type curve sets. This is particularly attractive if the
concept is expected to be valid for a number of well tests, so that the
curves can be reused. If the situation is unique, then direct parame-
ter estimation with the simulator in the loop, as described below, will
probably be more effective.

The principle behind automatic, or computer assisted, parameter
matching with a well test simulator is simple: We have geological
model with a set of parameters, {𝜆}, and this model is implemented
in a numerical well test simulator. The simulator then run the model
with different parameter values until the simulated responsematches
the measured well test response. Manual matching may be based on
pure visual inspection of plots of the simulated results. In order to in-
volve optimization algorithms in thematching process, then themis-
match, that is the difference between the simulated and themeasured
data, must be quantified. The measure is called a mismatch function
or an objective function, and a typical form that is used is a weighted
sum of squares:

𝒪({𝜆}) = ∑
𝑛
𝑤𝑛 (𝑀𝑛 − 𝑆𝑛({𝜆}))

2 , (12.22)

where 𝒪 is the mismatch function,𝑀𝑛 is a measured quantity and 𝑆𝑛
is the corresponding simulated value, and 𝑤𝑛 is the weight that is put
on the 𝑛-thmeasurement. When the objective function is defined, the
parameter estimation is a minimization process, that is a question of
finding the parameter set that minimize the objective.

Creating a good objective function, that is selecting which mea-
sured values to include and what weights to put on them, is highly
non-trivial. It would seem that the definition is totally arbitrary and
subjective, but if the objective function is defined in a Bayesian frame-
work we have a language in which the question of what is a good ob-
jective function can be discussed.

Bayes theorem can be stated in mathematical terms as

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) ∝ 𝑃(𝐴)𝑃(𝐵|𝐴) , (12.23)

where 𝑃(𝐴|𝐵) is the conditional probability that 𝐴 occur given that 𝐵
has occurred. Thus Eq. (12.23) gives us amean to obtain the posterior
probability 𝑃(𝐴|𝐵) from the prior probability 𝑃(𝐴), that is the condi-
tional probability for the occurrence of𝐴 after the occurrence of 𝐵 has
been taken into account. Reformulating Bayes theorem to our setting
gives

𝑝posterior({𝜆}|{𝑀}) ∝ 𝑝prior({𝜆})𝑝({𝑀}|{𝜆}) . (12.24)
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We seek the most probable posterior
parameter set.

The objective function is the sum of a
prior term and a mismatch function.

The weights in the mismatch function
are given by the model and measure-
ment errors.

If we define an objective function such that

𝑝({𝜆}) ∝ exp (−𝒪({𝜆})) , (12.25)

then Bayes theorem can written as

𝒪posterior({𝜆}, {𝑀}) = 𝒪prior({𝜆}) + 𝒪({𝑀}, {𝜆}) . (12.26)

We see that if we define the objective function by Eq. (12.25), then
an objective function of value zero gives a probability of exp(0) = 1,
while a large objective function gives a small probability. Thus, min-
imizing the objective function corresponds to finding the most prob-
able parameter set.

Comparing Eqs. (12.22) and (12.26) we can identify the mismatch
function

𝒪({𝑀}, {𝜆}) = ∑
𝑛
𝑤𝑛 (𝑀𝑛 − 𝑆𝑛({𝜆}))

2 , (12.27)

which gives

𝒪posterior({𝜆}, {𝑀}) = 𝒪prior({𝜆}) +∑
𝑛
𝑤𝑛 (𝑀𝑛 − 𝑆𝑛({𝜆}))

2 . (12.28)

If we identify the best parameter set with the most probable pos-
terior parameter set, we see from Eq. (12.28) that we need to mini-
mize an objective function that contain two terms: a prior term and
a mismatch function. The prior term represents prior knowledge of
possible parameter values, and is often set to zero reflecting that we
make no prior assumptions. Note that if the number of parameters
is large, the minimization problem without a prior term is ill posed,
and the prior term serves as a natural regularization. The mismatch
term represents what in Bayesian statistics is called themeasurement
likelihood, that is the probability that a measurement will give the
measured values given the parameter set.

If we use a Gaussian error model for uncorrelated measurements,
the likelihood is

𝑝({𝑀}|{𝜆}) ∝ exp (−∑
𝑛

(𝑀𝑛 − 𝑆𝑛({𝜆}))
2

𝜎2𝑛,model + 𝜎2𝑛,meas
) , (12.29)

where 𝜎𝑛,meas is the measurement error and 𝜎𝑛,model is the model error.
From Eq. (12.29), we see that the weights in Eq. (12.22) are

𝑤𝑛 =
1

𝜎2𝑛,model + 𝜎2𝑛,meas
. (12.30)

By introducing the Bayesian framework, we have identified the
need for a prior term in addition to themismatch term in the objective
function, and we have concluded that the weights in the mismatch
function are given by the model and measurement errors. Determin-
ing whichmeasurements that should be included in themismatch re-
main undetermined. One might think that using all actual pressure
measurements would be the correct thing to do. However, the errors,
in particular the model errors, are highly correlated in time, and we
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The mismatch function should be
defined using quantities that are
characteristic of the well test response.

have assumed uncorrelated measurements. Introducing the error co-
variance matrix, 𝐶, in the Gaussian error model:

𝑝({𝑀}, {𝜆}) ∝ − exp (∑
𝑛𝑚

(𝑀𝑛 − 𝑆𝑛({𝜆})) (𝐶−1)𝑛𝑚 (𝑀𝑚 − 𝑆𝑚({𝜆}))) ,

(12.31)
is sometimes proposed as a solution to this, but it is actually not a
good idea. There are two main reasons for this: first, it is very dif-
ficult to obtain good estimates for the correlations, and second, the
inverse of the covariance matrix is highly sensitive to small errors in
the covariance estimates. The solution to the problem of correlations
is to use as few measurements as possible. To obtain this, calculated
quantities that are characteristic of the well test response, such as
derivatives, should be used in themismatch function instead of many
direct pressure measurements.

12.3 Interference testing

An interference test involves at least twowells. The pressure response
from a rate change in one well is recorded in one or more non-produ-
cing wells. The main purpose of interference testing is to determine
and quantify pressure communication. In some simple cases analyt-
ical models can be used for the analysis of these tests, and we have
seen such an example in the section on non sealing faults (page 74),
but in general numerical simulation is a necessary tool in the plan-
ning and analysis of interference tests. In this section we will give a
brief presentation of two examples in order to illustrate this.

Fig. 12.4 shows two wells in a a fluvial reservoir. Optimal reser-

Figure 12.4: Interference testing wells
for estimating sand body communica-
tion in a fluvial reservoir

voir steering, and the need for and placement of future in-fill wells,
depend on the permeability distribution which is determined by the
density of sand bodies and the sand body geometries. An interference
test, using the two wells, would give valuable information relating to
these parameters.

Fig. 12.5 shows twowells in different reservoir compartments. Due
to the limited resolution of seismic, the location and extension of
faults is uncertain. When a fault with a small throw links up with a
large fault, such as fault B is linked up with themain fault in Fig. 12.5,
it is often difficult to determine whether it extends all the way to the
large faults. It is also unknown to what extent the faults are sealing.



136 LECTURE NOTES IN WELL -TESTING

Figure 12.5: Interference testing wells
for estimating fault patterns and fault
communication

Well tests in each of the two wells might give information relating to
some of these parameters, while an interference test would give addi-
tional data. We will in the following discuss some simulated data that

Figure 12.6: Pressure distribution in
two alternative reservoirs; a reservoir
with a fault that does not extend to
the main bounding fault (left), and a
reservoir where the same fault is not
completely sealing (right).

illustrates the possible use of an interference test in this situation.
Relating to Fault B, we are interested in discriminating three differ-
ent cases; a completely sealing fault that links up with themain fault,
a sealing fault that does not link up, and a incompletely sealing fault.
In the first case, the observation well in isolated from the producer, so
this situation will be easy to detect by a single pressuremeasurement,
while we in the two other cases will get a time dependent response in
both producer and observation well. The pressure distribution after
prolonged production is shown in Fig. 12.6.
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Figure 12.7: Log-derivative diagnostic
plot for the drawdown test and differ-
ent fault configurations. Sealing fault
in black, non-sealing fault in blue, and
unlinked faults in red.

As shown in Fig. 12.7, a well test might be able to differentiate be-
tween a completely sealing fault, and the two leaky-fault situations.
A long test, about a month in the simulated 300mD reservoir, is how-
ever needed, and the two other cases have an almost identical re-
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sponse. A log–derivative plot for the observation well response is
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Figure 12.8: Log-derivative type plot
for the observation well response and
different fault configurations. Non-
sealing fault in blue, and unlinked
faults in red.

shown in Fig. 12.8. We see that the late time response for the non-
sealing-fault and unlinked-fault case is almost identical. As the pres-
sure disturbancewill have to travel a longer distance for the unlinked-
fault case than in the non-sealing-fault case, the pressure signal will
arrive later (a factor of two in arrival time). This difference enables
the use of the observation well response to discriminate the two sce-
narios. In the simulated case, a test running over just a few days is
sufficient for this. The strength of the signal is proportional to the
rate, and the simulation results can also be used as a guide to what
is a sufficient test rate in order to receive a detectable early response.
The observation well response is also more sensitive to the fault seal
parameters such as fault-zone permeability, and will provide more
accurate estimates.





𝐹(𝑡) is often called the influence
function.

Convolution is the continuous version
of superposition.

1 In the integration by parts we have
used that𝑄(0) = 0 and 𝐹(0) = 0.

The deconvoluted pressure can be
analyzed using the methods derived for
the drawdown test.

Deconvolution in well testing is an
ill-posed problem.

13
Deconvolution

The superposition principle was introduced in connection with the
buildup test (page 39), and additional examples of application is the
two-rate test (page 112) and the step-rate test (page 113). According
to this principle, we can express the pressure response to any number
of rate changes 𝛥𝑄𝑛 occurring at times 𝜏𝑛 in terms of the response in
a simple drawdown test 𝐹(𝑡):

𝑝0 − 𝑝𝑤(𝑡) = ∑
𝑛
𝛥𝑄𝑛𝐹(𝑡 − 𝜏𝑛) . (13.1)

We see that, if we approximate a continuous rate history with a num-
ber of equally spaced (𝛥𝑡) step changes, and let 𝛥𝑡 → 0, Eq. (13.1)
becomes

𝑝0 − 𝑝𝑤(𝑡) = ∫
𝑡

0
𝑄′(𝜏)𝐹(𝑡 − 𝜏) 𝑑𝜏 . (13.2)

This continuous version of superposition is called convolution. The
inverse of convolution is deconvolution, which with reference to
Eq. (13.2) means finding 𝐹(𝑡) from the known pressure and rate his-
tory 𝑝𝑤(𝑡) and 𝑄′(𝑡).

Eq. (13.1) involves the derivative of the rates, and derivatives are
noisy and inaccurate for any real data. By applying integration by
parts and a change of variable we get an alternative form1

𝑝0 − 𝑝𝑤(𝑡) = ∫
𝑡

0
𝑄(𝜏)𝐹′(𝑡 − 𝜏) 𝑑𝜏 = ∫

𝑡

0
𝑄(𝑡 − 𝜏)𝐺(𝜏) 𝑑𝜏 , (13.3)

where 𝐺(𝜏) = 𝐹′(𝜏).
In principle, by applying deconvolution, any rate and pressure his-

tory can be analyzed using the methods derived for the drawdown
test. For instance, a well history with unstable rates or several short
shut-downs, where the late time responses will be masked by short
time fluctuations, can be analyzed for responses corresponding to the
total producing time for the identification of reservoir boundaries. If
we have complete data for all wells in a reservoir, the methodology
may even be extended to finding the response for each well and each
well–observation well pair. In practice the situation is not as sim-
ple, and deconvolution actually became a practical part of the well-
test analysis toolbox as late as around 2010, and the development of
robust deconvolution methods is still an active research topic. The
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Deconvolution assumes that the
reservoir properties, including skin, are
constant in time.

2 See Eq. (15.9) in the mathematical
notes for transformation to Laplace
space.

main hurdle is that the deconvolution problem, Eq. (13.3), is ill-posed
in the sense that, without proper regularization, small errors in rate
and pressure data give large errors in the estimates.

Note also that missing data, in particular in multi well situations,
and changing reservoir properties, such as non-constant skin, will al-
ways limit the applicability of deconvolution.

The actual implementation of deconvolution will vary between
software packages, and we will not present any algorithm in detail.
Algorithms and methods fall in two categories: deconvolution in the
time domain, and deconvolution in Laplace space.

13.1 Spectral methods

Spectral methods are methods applied in Fourier (frequency) or
Laplace space. It is well known2 that a convolution integral in time
transforms to a simple multiplication in these spaces, and that de-
convolution thus amounts to division. In Laplace space, Eq. (13.3)
becomes

𝛥𝑝(𝑠) = 𝑠𝑄(𝑠)𝐹(𝑠) , (13.4)

where 𝐹(𝑠) is the Laplace transform of 𝐺 in Eq. (13.2), so that we have

𝐹(𝑠) = 𝛥𝑝(𝑠)
𝑠𝑄(𝑠)

. (13.5)

In order to evaluate Eq. (13.5) we need to calculate the Laplace
transform of the measured data. Measurements are only available for
a finite time interval (𝑡0, 𝑇), while the transform is an integral over
the full interval (0,∞). We can write the Laplace transform of sam-
pled data, {𝑓(𝑡𝑛)}, as

𝐼(𝑠) = 𝐼1(𝑠) + 𝐼2(𝑠) + 𝐼3(𝑠) , (13.6)

where

𝐼1(𝑠) = ∫
𝑡0

0
𝑒−𝑠𝑡𝑓𝑜(𝑡) 𝑑𝑡 ,

𝐼2(𝑠) = ∑
𝑛
∫

𝑡𝑛

𝑡𝑛−1
𝑒−𝑠𝑡𝑓𝑛(𝑡) 𝑑𝑡 ,

and

𝐼3(𝑠) = ∫
∞

𝑇
𝑒−𝑠𝑡𝑓∞(𝑡) 𝑑𝑡 .

(13.7)

For rates, 𝑓0, can usually be treated as a step rate change, and 𝑓∞(𝑡) is
a constant by definition, so that we have

𝐼𝑄1 (𝑠) = (1 − 𝑒−𝑠𝑡0) 𝑄(𝑡0)𝑠 (13.8)

and
𝐼𝑄3 (𝑠) = 𝑒−𝑠𝑇 𝑄(𝑇)𝑠 . (13.9)

If the first pressure measurement, 𝑝0 = 𝑝(𝑡0), is early enough so that
the response is dominated by wellbore storage, the pressure in the
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first integral 𝐼𝑝1 will be linear, 𝑓
𝑝
0 (𝑡) =

𝑝0
𝑡0
𝑡. By applying integration by

parts, one can show that

𝐼𝑝1 (𝑠) = ∫
𝑡0

0
𝑒−𝑠𝑡𝑓𝑝𝑜 (𝑡) 𝑑𝑡 = (1 − (1 + 𝑠𝑡0) 𝑒−𝑠𝑡0)

𝑝0
𝑠2𝑡0

. (13.10)

In the integrals over samples, 𝐼𝑄2 and 𝐼𝑝2 , linear interpolations on log-
log scale (𝑓𝑛(𝑡) = 𝑎𝑛𝑡𝛼𝑛) is in general preferred.3 However, step
changes in rates should be represented as such, and the correspond-
ing interpolation of subsequent pressure responses may also be time
shifted (𝑝(𝑡) = 𝑎(𝑡 − 𝑡𝑠)𝛼, where 𝑡𝑠 is the time of step rate change)
to better reflect the time scale of the response. Numerically, smart
reordering of terms in the summation in order to preserve sufficient
accuracy is often also required.

The main concern is the extrapolation of the pressure into the fu-
ture, that is for 𝑡 > 𝑇. A reasonably stable rate before the end of the
test is preferred, in which case a linear extrapolation similar to slider
analysis (see page 47) can be sufficient. Caution is advised, since in
particular the late time behavior of the deconvoluted influence func-
tion often end up as a reproduction of the imposed extrapolation. In
order to trust any results based on spectral deconvolution, it is re-
quired to investigate the sensitivity of results on the extrapolation.

The deconvoluted response can be analyzed in the time domain by
numerically inverting the transformed response (Eq. (13.5)) using for
instance the Stehfest algorithm (page 130). This inversion has its own
intrinsic numerical issues that add to the uncertainty in the analysis,
and it is thus often better to perform the analysis directly in Laplace
space.4 For instance can a log–log plot of 𝑠𝐹(𝑠) vs. 1/𝑠 be used to iden-
tify flow regimes, and corresponding reservoir properties, inmuch the
same way as the log–log derivative diagnostic plot (page 56). Note
that, being an integral, the Laplace transformed response is smoother
than the response in time, and the separation between flow regimes is
less pronounced. Thismakes itmore difficult to identify flow regimes,
i.e. a larger separation (in time) is needed.

13.2 Time domain methods

A major breakthrough was made in the development of time domain
methods for deconvolution in the early 2000s when it was proposed
that the problem could be cast in the form of a minimization prob-
lem.5 A number of algorithms have subsequently been formulated
based on this idea, and we will here only present the main philoso-
phies behind these algorithms without going into any detail.

As we defined 𝐺(𝜏) = 𝐹′(𝜏), Eq. 13.3 was written as

𝑝0 − 𝑝𝑤(𝑡) = ∫
𝑡

0
𝑄(𝑡 − 𝜏)𝐺(𝜏) 𝑑𝜏 , (13.11)

and the time domain methods solve for the pressure derivative 𝐺(𝑡).
This is also the most interesting function for the analysis since the

https://doi.org/10.2118/36554-PA
https://doi.org/10.2118/22682-PA
https://doi.org/10.2118/77688-PA
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6 Linear interpolation corresponds to
local triangle shaped basis functions.

7 The Bayesian approach, that is the
use of prior beliefs for regularization
was discussed on page 133.

log–log derivative diagnostic plot (page 56) is a plot of − 𝑑𝑝
𝑑ln(𝑡)

and we
have

− 𝑑𝑝
𝑑ln(𝑡) = 𝑡𝐺(𝑡) . (13.12)

Since the functions 𝐹(𝑡) and𝐺(𝑡) aremulti scale, and typically vary on
a logarithmic time scale, it is common to perform the substitutions
𝜎 = ln 𝜏 and 𝑍(𝜎) = ln(𝜏𝐺(𝜏)), which gives:

𝑝0 − 𝑝𝑤(𝑡) = ∫
ln 𝑡

−∞
𝑄(𝑡 − 𝑒𝜎)𝑒𝑍(𝜎) 𝑑𝜎 , (13.13)

and solve for the function 𝑍(𝜎), which is directly related to the diag-
nostic plot. This also has the added bonus that 𝑡𝐺(𝑡) = 𝑒𝑍 is guaran-
teed to be positive, but the flip side is that the substitution has trans-
formed the linear relation between 𝐺 and 𝑝 into a non-linear relation
between 𝑍 and 𝑝.

In order to solve Eq. (13.11) for𝐺 it must be discretized. Pressure is
a measured quantity that is only available at discrete times {𝑡𝑖}, and in
general the right hand side is discretized by approximating 𝑄(𝑡) and
𝐺(𝑡) in terms of a finite set of basis functions

𝑄(𝑡) = ∑
𝑛
𝑞𝑛𝜃𝑛(𝑡) , and 𝐺(𝑡) = ∑

𝑚
𝑔𝑚𝜓𝑚(𝑡) , (13.14)

which gives
𝑝𝑤(𝑡𝑖) = 𝑝0 −∑

𝑚𝑛
𝑞𝑛𝑔𝑚𝐴𝑛𝑚𝑖 , (13.15)

where

𝐴𝑛𝑚𝑖 = ∫
𝑡𝑖

0
𝜃𝑛(𝑡𝑖 − 𝜏)𝜓𝑚(𝜏) 𝑑𝜏 . (13.16)

For the rates, which is a measured quantity, it is natural to use either
piecewise constant or interpolating functions as basis. For 𝐺, it is
most common to use log-linear interpolation between equally spaced
points on a logarithmic time scale, while Eq. (13.13) is already on a
logarithmic time scale (𝜎) so linear interpolation6 is used for 𝑍. In
general the basis function need not be local, however selecting ba-
sis functions that in some manner are related to an equal spacing on
a logarithmic time scale seems to be a important. This may not be
surprising, given the form of the infinite acting solution (Eq. (3.29)).

As mentioned earlier, deconvolution is an ill-posed problem and
we have errors both in the measured rates and pressures. As a result
the problem must be regularized. This can be done in three ways:
Limiting the solution space spanned out by the basis functions {𝜓𝑚} so
that the solutions is guaranteed to obey known properties, imposing
prior beliefs regarding the solution7 or imposing other restrictions
typically relating to the smoothness of the solution.

For simplicity wewill first assume that we have no errors in the rate
data. Without regularization the problem is then simply reduced to
finding the solution that minimize the difference between the right-
hand and left-hand side of Eq. (13.15)

𝐸𝑝(𝑝0, {𝑔𝑚}) =
1
𝑁𝑖

∑
𝑖
(𝑝𝑤(𝑡𝑖) − 𝑝0 +∑

𝑚𝑛
𝑞𝑛𝑔𝑚𝐴𝑛𝑚𝑖)

2

. (13.17)
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Without imposing strong restrictions on the solution, this problem is
ill-posed, so we must add an extra regularization term𝛺({𝑔𝑚}) to the
function that is to be minimized:

min
𝑝0,{𝑔𝑚}

[𝐸𝑝(𝑝0, {𝑔𝑚}) + 𝛼𝛺({𝑔𝑚})] . (13.18)

A regularization term that limits the second derivative of𝑍 has proven
to be a good choice (see Eq. (13.13)):

𝛺 ∝ ∫
ln𝑇

−∞
[𝑍″(𝜎)]2 𝑑𝜎 . (13.19)

When using the quotient rule and solving for 𝐺 directly, Eq. (13.19)
becomes

𝛺 ∝ ∫
𝑇

0
[𝐺

″(𝜏)𝜏2
𝐺(𝜏) + 𝐺′(𝜏)𝜏

𝐺(𝜏) − (𝐺
′(𝜏)𝜏
𝐺(𝜏) )

2
]
2
𝑑𝜏
𝜏 . (13.20)

With a regularization term similar to Eq. (13.19), which falls in
the class of Tikhonov regularization, the minimization problem
Eq. (13.18) would be of the linear least square type which can be
directly solved by standard methods. This form does however not
seem to sufficiently restrict on the solution space, and with the form
Eq. (13.20) the problem is of the non-linear least square type.

We know that the influence function 𝐹 will be dominated by the
wellbore storage effect (see page 36) for short times, thus the basis
functions should be selected such that 𝐹 is linear for short times. Ad-
ditional regularization can be obtained by judiciously selecting basis
functions 𝜓𝑚 such that 𝐺(𝑡) satisfies at least some of the following
known requirerments

𝐺(𝑡) > 0
𝐺′(𝑡) < 0
𝐺″(𝑡) > 0

⋮

(13.21)

which holds under quite general conditions.8 As an example,9 with
exponential basis functions 𝜓𝑚(𝑡) = 𝑒−𝜆𝑚𝑡, the requirements in
Eq. (13.21) are met for all orders of the derivative provided that all
𝑔𝑚 > 0.

In reality we always have errors in the rate data, so that we need
to solve for {𝑞𝑛} in addition to {𝑔𝑚} in Eq. (13.15). The corresponding
regression problem is known as a “Total Least Squares” or “Errors In
Variables” problem. One way of attacking this problem is to include
the rates in the set of unknowns and add a term

𝐸𝑞({𝑞𝑛}) =
1
𝑁𝑗
∑
𝑗
(𝑄(𝑡𝑗) −∑

𝑛
𝑞𝑛𝜃𝑛(𝑡𝑗))

2

(13.22)

to the function that is to be minimized:

min
𝑝0,{𝑔𝑚},{𝑞𝑛}

[𝐸𝑝(𝑝0, {𝑔𝑚}, {𝑞𝑛}) + 𝛽𝐸𝑞({𝑞𝑛}) + 𝛼𝛺({𝑔𝑚})] . (13.23)

https://doi.org/10.2118/897-PA
https://doi.org/10.1007/s10665-016-9854-x
https://doi.org/10.1007/s10665-016-9854-x
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Figure 13.1: The principle behind the
L-cuve plot.

The relative weight put on each of the tree terms in Eq. (13.23) is to
a certain extent arbitrary. In a Bayesian context (see page 133) it is
however natural to choose

𝛽 =
𝜎2𝑝
𝜎2𝑞

, (13.24)

where 𝜎𝑝 and 𝜎𝑞 are the standard errors in pressure and rate measure-
ments. The regularization parameter 𝛼 should be selected to give
the best balance between a good fit to data and a regular (smooth)
function. An “L-curve” plot, which is 𝛼-parameterized log–log plot
of 𝛯 = 𝐸𝑝 + 𝛽𝐸𝑞 vs. 𝛺 (see Fig. 13.1), can be a used as a tool.



Scenarios are a set of reasonably
plausible conceptual models

14
The role of well testing in reservoir characterization

The title of the course for which these lecture notes have been writ-
ten contains the phrase: “Reservoir Property Determination by Well
Testing”. We have seen that well testing is used in many additional
contexts, such as reservoirmonitoring andwell productivitymonitor-
ing, but these additional contexts have been touched only briefly. So,
what is the role of well testing in property determination, and which
properties are measured for what purpose? In this chapter we will try
to place well testing in the broader context of reservoir characteriza-
tion and reservoir modelling.

The simplistic perspective is that well testing gives us reservoir
permeability, distance to faults, fault communication, and reservoir
volume. A broader perspective is that well testing provides data
for reservoir characterization. Reservoir characterization is a multi-
disciplinary task coordinated by “geo-engineers”, that is peoplewith a
broad knowledge of reservoir geology and reservoir engineering. The
purpose of reservoir characterization is twofold: to provide qualita-
tive data to improve the understanding of the reservoir, and quanti-
tative data in order to model the reservoir. Reservoir models play a
major role in current development planning and reservoir manage-
ment practices.

Reservoir characterization has two levels; the conceptual model,
whichmay include a number of alternative scenarios, and parameter-
ized models, or property models. Reservoir parameters (properties)
have no meaning outside an associated conceptual model. A concep-
tual model is a clearly defined concept of the subsurface in the sense
that a geo-scientist could represent it as simple sketches. Scenarios
are a set of reasonably plausible conceptual models.

14.1 Scenarios

Scenarios are not incrementally different models based on changes
in input data or parameter values, scenarios are a set of reasonably
plausible conceptual models. Scenario uncertainty is the main con-
tributor to sub-surface uncertainty in early phase field development,
and often remain highly important even after many years of produc-
tion.
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Well testing can reduce scenario
uncertainty.

In order to take into account the uncertainty in a reservoir re-
sponse, such as the production in a given year, here represented by
𝜔, we represent the response as a probability distribution 𝑝(𝜔). The
probability can be expressed as

𝑝(𝜔) = ∑
𝑆
𝑃(𝑆)𝑝𝑆(𝜔) (14.1)

where 𝑃(𝑆) is the probability of a scenario member 𝑆, and 𝑝𝑆(𝜔) is the
probability of a a certain response (𝜔) in scenario 𝑆. Well testing can
supply data that contribute to falsify a conceptual model, or change
the probability associated with (plausibility of) each scenario mem-
ber.

In exploration, field development planning, and early phase pro-
duction, when scenario uncertainty is the dominant uncertainty, it
is important to obtain overview and understand the full set of pos-
sible geological concepts; the scenarios. One should therefore plan
for well tests and well placements that can contribute to the reduc-
tion of scenario uncertainty. Below we will present two examples of
scenario uncertainty. These examples, which are based on real field
cases, are not worked out in much detail, and it is up to the reader to
apply the knowledge of well testing obtained in previous chapters in
order to evaluate to what extent a well test will contribute to reducing
the uncertainty.

The first example is a reservoir delineated by two large faults, as
shown in Fig. 14.1. The structural interpretation is uncertain, and a

Figure 14.1: Alternative structural
conceptual models based on poor
seismic.

noisy seismicmay be interpreted based on two competing concepts: A
few internal faults in the east–west direction, or heavy internal fault-
ing parallel to the eastern main faults. Optimal well placement in a
water injection scheme will be very different for the two alternatives.

The second example relates to two different concepts on how the
reservoir material has been deposited. The two concepts are illus-
trated in Fig. 14.2. The first concept implies that the reservoir is de-
posited in two isolated zones, and that the upper zone pinches out to
thewest. In the second conceptualmodel, the boundary layer is heav-
ily eroded so that the two zones are communicating, and the west-
ern part of the upper zone is deposited as a thin layer reaching west-
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Figure 14.2: Alternative concepts
of reservoir pinch-out and vertical
communication.

Large scale property fields, such as
permeability, are effective properties

wards. Note that, as far as modelling for well test interpretation or
reservoir simulation is concerned, the two concepts can be spanned
out in a single model with continuous variables (extent of up-flank
volume and sealing capacity of inter-zonal layer). They do, however,
represent two different geological concepts, and the concept selec-
tion will also possibly influence other aspects of the modelling. This
illustrates that the distinction between scenario uncertainty, and un-
certainty described by parameter variation is sometimes not clear cut
in practice.

14.2 Model elements

A given conceptual model contains model elements. Model elements
are rock bodies which are petrophysically and/or geometrically dis-
tinct in the context of reservoir fluid flow, and are the building blocks
of reservoir models, both conceptually and as realized in a computer.
Model elements have properties, i.e. they can be described with a set
of parameters. These parameters are geometric properties, such as
length, height, direction, and thickness, and volumetric properties
(property fields), such as porosity, permeability, clay content, and fa-
cies fractions, The property fields of different model elements are as-
sociated with a homogeneity scale or representative elementary vol-
ume (REV).

Figure 14.3: Example of geological fea-
tures represented by model elements at
different scales

In general the model elements form a hierarchy, where large scale
elements consist of elements at smaller scales (see Fig. 14.3). The
property fields of large scale elements are effective properties which
represent some form of averaging of the property fields of the consti-
tutive elements. For permeability, which is a tensor field, this aver-



148 LECTURE NOTES IN WELL -TESTING

Data integration and data consistency
involve up- and down-scaling.

aging is non-trivial.
Well testing can provide data related to geometric properties of

structural elements, but in terms of property fields a well test can
only see permeability and porosity. Since, as described above, per-
meability is a scale dependent property associated with representa-
tive elementary volumes at certain homogeneity scales, the question
of which permeability the well test is probing has to be answered. In
general, the early time data see small-scale properties (and short time
scales), while the late time data see large scale properties (and longer
time scales). Additionally, in particular important for the short time
data, there is always some along-wellbore “averaging” involved. In
any case, well testing is the only measurements that measure per-
meability at real reservoir conditions at scales directly relevant for
reservoir simulation.

14.3 Measurements

Themain data sources for reservoir characterization are seismic, out-
crops and analogues, reservoir cores, well logs, well tests, and pro-
duction data. All measurements, including well testing results, must
be interpreted in the context of themodel elements of a relevant con-
ceptual model, and a well test interpretation must be consistent with
other relevant data. Each measurement is associated with a mea-
surement scale, or probed volume, and thus measure properties of
model elements on different levels of the model-element hierarchy.
Note that, since, additionally, the measurement scale associated with
a given measurement often do not correspond to any of the homo-
geneity scales of the model elements we need to characterize, data
consistency and consistent data integration is in general non trivial
and involve both up- and down-scaling.

14.4 Final words

Well testing does not live in isolation, and a well test must be planned
and interpreted in the context of conceptual geological models and
their model elements. A key to successful reservoir characterization
is that everyone work with shared scenarios in a collective effort, and
a planned well test should be performed in order to answer specific
predefined questions. Remember also that scenario uncertainty is of-
ten the dominant uncertainty. We should always ask ourselves and
our colleagues: Have we included all plausible conceptual models?



1 The term tensor is usually not used
for scalars and vectors, but scalars can
be viewed as tensors of order 0 and
vectors as tensors of order 1.

15
Mathematical notes

The notation that are used in these lecture notes may be unfamiliar
to some. The coordinate free notation that is used is more common
in physics texts than in engineering books. However, I am convinced
that once the basics of the notation is mastered, equations are much
easier to read and understand. Darcys law is for instance written as

𝑞 = −1𝜇𝐾 ⋅ ∇𝑝

in coordinate free notation, instead of

𝑞𝑖 = −1𝜇
3
∑
𝑗=1

𝐾𝑖𝑗
𝜕
𝜕𝑥𝑗

𝑝

in the normal engineering type notation.

15.1 Scalars, vectors, and tensors

The fundamental objects in any continium theory, including fluid
flow in porous media, are scalar-fields, vector-fields, and tensor-
fields. This text folllows the common lazy tradition of using the terms
scalar, vector, and tensor for these fields.

All readers should be familiar with the concepts of scalars and vec-
tors, while tensors may be a less familiar object. In the context of the
present text, only tensors of order 2 is encountered1, and the most
prominent is the permeability, 𝐾. Permeability is a linear operator
that operates on a gradient (derivative of pressure) to produce a vec-
tor (volumetric flux). Such operators are called (2,0) tensors, or more
simply tensors of order 2. The tensor concept can be viewed as a gen-
eralization of a vector, and taking the so called tensor product of two
vectors create a tensor of order 2 (see Table 15.1).

No special notation is used in order to distiguish between scalars,
vecrtors, and tensors. However, lower case letters are typically used
for scalars and vectors, and upper case letters for tensors.

Scalars, vectors and tensors can be multipled, either using the dot
product or the tensor product as shown in Table 15.1.
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Coordinate free notation Index notation

𝑣 = 𝑎𝑢 𝑣𝑖 = 𝑎𝑢𝑖
𝑎 = 𝑢 ⋅ 𝑣 𝑎 = ∑𝑖 𝑢𝑖𝑣𝑖
𝑣 = 𝐾 ⋅ 𝑢 𝑣𝑖 = ∑𝑖 𝐾𝑖𝑗𝑢𝑗
𝑣 = 𝑢 ⋅ 𝐾 𝑣𝑗 = ∑𝑖 𝑢𝑖𝐾𝑖𝑗
𝐾 = 𝐿 ⋅ 𝑀 𝐾𝑖𝑗 = ∑𝑛 𝐿𝑖𝑛𝑀𝑛𝑗

𝐾 = 𝑢𝑣 𝐾𝑖𝑗 = 𝑢𝑖𝑣𝑗

Table 15.1: Multiplication of tensors. 𝑎
is a scalar, 𝑢 and 𝑣 are vectors and 𝐾,
𝐿, and𝑀 are tensors.

Gauss divergence theorem.

15.2 Spatial derivatives and the gradient operator

The operator for spatial derivatives is the nabla, or gradient, opera-
tor, ∇. In terms of notation, ∇ behaves like a vector, but it must be
remembered that ∇ operates on (takes the derivative of) the expres-
sion to the right. Some examples of expressions involving the nabla
operator can be found in Table 15.2. The shorthand notation ∇2 is
used for the second derivative operator ∇ ⋅ ∇ (the Laplace operator).
The derivation takes presedence over multiplication. Paranthesis are
used to group.

Coordinate free notation Index notation

∇ 𝜕
𝜕𝑥𝑖

∇2 = ∇ ⋅ ∇ 𝜕2

𝜕𝑥2𝑖
∇∇ 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑣 = ∇𝑎 𝑣𝑖 =

𝜕
𝜕𝑥𝑖

𝑎

𝑎 = ∇ ⋅ 𝑣 𝑎 = ∑𝑖
𝜕
𝜕𝑥𝑖

𝑎𝑖
𝐾 = ∇∇𝑎 𝑘𝑖𝑗 =

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑎

𝑏 = ∇2𝑎 𝑏 = 𝜕2

𝜕𝑥2𝑖
𝑎

𝑐 = ∇𝑎 ⋅ 𝐾 ⋅ ∇𝑏 𝑐 = ∑𝑖𝑗
𝜕𝑎
𝜕𝑥𝑖

𝐾𝑖𝑗
𝜕𝑏
𝜕𝑥𝑗

𝑐 = ∇ ⋅ (𝑎𝐾 ⋅ ∇𝑏) 𝑐 = ∑𝑖𝑗
𝜕
𝜕𝑥𝑖

(𝑎𝐾𝑖𝑗
𝜕𝑏
𝜕𝑥𝑗

)

Table 15.2: Examples of expressions
involving the ∇ operator. 𝑎, 𝑏, and 𝑐
are a scalars, 𝑢 and 𝑣 are vectors and 𝐾
is a tensor.

We see in particular that the divergence of a vector field 𝑞 =
(𝑞𝑥, 𝑞𝑦, 𝑞𝑧) is a scalar given by the dot product ∇ ⋅ 𝑞 = 𝜕𝑞𝑥

𝜕𝑥
+ 𝜕𝑞𝑦

𝜕𝑦
+ 𝜕𝑞𝑧

𝜕𝑧
,

that the gradient of a scalar field 𝑝 is a vector field ∇𝑝 = ( 𝜕𝑝
𝜕𝑥
, 𝜕𝑝
𝜕𝑦
, 𝜕𝑝
𝜕𝑧
),

and that the Laplace operator ∇2 sends a scalar to a scalar.

15.3 The Gauss theorem, and the continuity equation

The Gauss divergence theorem:

∫∇ ⋅ 𝑣 𝑑𝑉 = ∫𝑣 ⋅ 𝑑𝑆 . (15.1)

𝑣 is a vector, the left integral is over a volume, and the right integral is
over the enclosing surface. Note that 𝑑𝑆 is an outward pointing vector
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Continuity equation on integral form.

Continuity equation on differential
form.

normal to the surface element.
The continuity equation for some entity involves three quantities:

• 𝜌: Density, that is the amount per volume.

• 𝑗: Flux, that is the amount that flows per area and time (a vector).

• 𝜎: The amount that is created per volume and time.

For any given volume we then have

𝜕
𝜕𝑡 ∫𝜌𝑑𝑉 = ∫𝜎𝑑𝑉 −∫𝑗 ⋅ 𝑑𝑆 (15.2)

This is the continuity equation on integral form. Numerical simula-
tion often employ control volume discretisation, and Eq. (15.2) is then
applied to the each control volume or grid-block.

If we apply the Gauss theorem to the surface integral in eq. 15.2 we
get

𝜕
𝜕𝑡 ∫𝜌𝑑𝑉 = ∫𝜎𝑑𝑉 −∫∇ ⋅ 𝑗 𝑑𝑉 , (15.3)

and if we let the volume be an infinitely small differential element,
Eq. (15.3) gives

𝜕
𝜕𝑡𝜌 + ∇ ⋅ 𝑗 = 𝜎 , (15.4)

which is the continuity equation on differential form.

15.4 Laplace transform

The Laplace transform ℒ ∶ 𝑓 → 𝑓 is an integral transform, and it is
usually applied as a transform in time:

𝑓(𝑠) = ∫
∞

0
𝑓(𝑡)𝑒−𝑠𝑡 𝑑𝑡 . (15.5)

The Laplace transform is a linear operator:

ℒ (𝑓 + 𝑔) = ℒ𝑓 +ℒ𝑔 = 𝑓 +𝑔
ℒ (𝑐𝑓) = 𝑐ℒ𝑓 = 𝑐𝑓 . (15.6)

Calculating the integral, we observe that the Laplace transform of
unity and of 𝑡 are

ℒ(1) = ∫
∞

0
𝑒−𝑠𝑡 𝑑𝑡 = [−1𝑠 𝑒

−𝑠𝑡]
∞

0
= 1
𝑠

ℒ(𝑡) = ∫
∞

0
𝑡𝑒−𝑠𝑡 𝑑𝑡 = [−𝑡𝑠𝑒

−𝑠𝑡]
∞

0
−∫

∞

0
−1𝑠 𝑒

−𝑠𝑡 𝑑𝑡 = 1
𝑠ℒ(1) =

1
𝑠2 ,

(15.7)

where we are applying integration by parts when solving the trans-
form in time 𝑡. We observe that time 𝑡 and the variable 𝑠 has an inverse
correspondence, hence late times 𝑡 corresponds to small 𝑠.
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The transformation of the partial derivatives are

ℒ (𝜕𝑓𝜕𝑥) = ∫
∞

0

𝜕𝑓
𝜕𝑥𝑒

−𝑠𝑡 𝑑𝑡 = 𝑑𝑓
𝑑𝑥

ℒ (𝜕𝑓𝜕𝑡 ) = ∫
∞

0

𝜕𝑓
𝜕𝑡 𝑒

−𝑠𝑡 𝑑𝑡 = 𝑠𝑓(𝑥, 𝑠) − 𝑓(𝑥, 0) , (15.8)

where we use the basic rule∫ 𝜕
𝜕𝑥
𝑓(𝑥, 𝑦)𝑑𝑦 = 𝜕

𝜕𝑥
∫𝑓(𝑥, 𝑦)𝑑𝑦 for the first

equality and integration by parts for the second equality.
The transformation of a convolution integral is a product:

ℒ(∫
𝑡

0
𝑓(𝑡 − 𝜏)𝑔(𝜏) 𝑑𝜏) = 𝑓(𝑠) ⋅ 𝑔(𝑠) . (15.9)

This can be shown as follows:

∫
∞

0
𝑑𝑡∫

𝑡

0
𝑑𝜏 𝑒−𝑠𝑡𝑓(𝑡 − 𝜏)𝑔(𝜏) =

∫
∞

−∞
𝑑𝑡∫

∞

−∞
𝑑𝜏 𝑒−𝑠𝑡𝑓(𝑡 − 𝜏)𝑔(𝜏) =

∫
∞

−∞
𝑑𝑡′∫

∞

−∞
𝑑𝜏 𝑒−𝑠𝑡′𝑒−𝑠𝜏𝑓(𝑡′)𝑔(𝜏) =

(∫
∞

0
𝑒−𝑠𝑡′𝑓(𝑡′)𝑑𝑡′) (∫

∞

0
𝑒−𝑠𝜏𝑔(𝜏)𝑑𝜏)

. (15.10)

The first and third equality follows from the fact that the functions
𝑓(𝑡) and 𝑔(𝑡) are zero for negative 𝑡.
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Other material

The following posters from Fekete Associates can serve as “cheat sheets”.

• Fekete poster: Well testing fundamentals
(http://www.fekete.ca/SiteCollectionDocuments/Posters/Fekete_WellTest_Fundamentals_
5731_0614AA_LOW.png)

• Fekete poster: Well testing applications
(http://www.fekete.ca/SiteCollectionDocuments/Posters/Fekete_WellTestApplications_5731_
0614AA_LOW.png)

http://bookboon.com/en/introductory-well-testing-ebook
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http://www.fekete.ca/SiteCollectionDocuments/Posters/Fekete_WellTestApplications_5731_0614AA_LOW.png
http://www.fekete.ca/SiteCollectionDocuments/Posters/Fekete_WellTestApplications_5731_0614AA_LOW.png
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Nomenclature

𝛼 shape factor (fracture systems)

𝛥𝑝ex effective pressure difference (by desuperposition)

𝑟𝐷 dimensionless radius, 𝑟𝐷 = 𝑟/𝑟𝑤
𝑟𝐷𝑜 dimensionless distance to the outer boundary

𝜂 (hydraulic) diffusivity, 𝜂 = 𝑘
𝜇𝜙𝑐𝑡

, SI derived unit: m2/s

𝛾 Euler(–Mascheroni) constant, 0.5772…

𝜆 inter-porosity flow parameter (dual porosity)

𝜇 viscosity, SI derived unit: Pa s = kg/(ms)

𝜇𝑡 effective viscosity (multiphase flow)

𝜔 storativity ratio (dual porosity)

𝑝 average reservoir pressure

𝜙 porosity

𝜙𝑓𝑏 bulk fracture porosity

𝜙𝑚𝑏 bulk matrix porosity

𝜓 pseudo-pressure (gas or multiphase reservoirs)

𝜌 fluid density

𝜎 matrix–fracture coupling

𝜎 pseudoskin

𝜎𝑚𝑓 volume of liquid flowing from matrix to fracture per time and bulk volume

𝐴 (reservoir) area

𝐵 formation volume factor

𝑐 compressibility, SI derived unit: 1/Pa

𝑐𝜙 formation compressibility, SI derived unit: 1/Pa

𝐶𝐴 Dietz shape factor

𝑐𝑙 liquid compressibility

𝐶𝑠 wellbore storage constant

𝑐𝑡 Total compressibility
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𝑐𝑡𝑓 total compressibility of fracture

𝑐𝑡𝑚 total compressibility of matrix (in a fracture system)

𝐹 influence function (reservoir response to a constant rate drawdown test)

𝐺 derivative of influence function (reservoir response to a constant rate drawdown test), 𝐺(𝜏) = 𝐹′(𝜏)

ℎ perforation (reservoir) height

𝑘 permeability, SI derived unit: m2

𝑘𝑓 fault zone permeability

𝑘𝑓 fracture permeability

𝑘𝑚 permeability of matrix (in a fracture system)

𝑘𝑜 oil permeability at 𝑆𝑤𝑖
𝑘𝑓𝑏 bulk permeability of the fracture system

𝑘𝑚𝑏 volume weighted matrix permeability, 𝑘𝑚𝑏 =
𝑉𝑚

𝑉𝑚+𝑉𝑓
𝑘𝑚

𝑘𝑟𝑜 relative oil permeability

𝐿𝑓 fault zone thickness

𝑙𝑊 length of horizontal well

𝑝 pressure, SI derived unit: Pa = kg/(ms2)

𝑝′ logarithmic derivative 𝑑𝑝
𝑑ln(𝑡)

𝑝𝑐 characteristic pressure, 𝑝𝑐 =
𝑄𝜇
2𝜋𝑘ℎ

𝑝𝐷 dimensionless pressure

𝑝𝑓 fracture pressure

𝑝𝑖 initial pressure

𝑝𝑚 matrix pressure

𝑝𝑤 well pressure (bottom-hole pressure)

𝑄 down hole (reservoir) well production rate

𝑞 volumetric fluid flux (Darcy velocity)

𝑄𝑠 surface well production rate

𝑟 radius

𝑟𝑒 equivalent radius (𝑝(𝑟𝑒) = 𝑝)

𝑟𝑜 outer reservoir radius

𝑟𝑝 radius of pressure front

𝑟𝑤 wellbore radius

𝑟inv radius of investigation

𝑟𝑤𝑒 equivalent (effective) wellbore radius

𝑆 skin factor, dimensionless
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𝑆𝑤𝑖 irreducible water saturation

𝑡𝑎 pseudo time (gas or multiphase reservoirs)

𝑡𝐷 dimensionless time

𝑡𝑒 effective time (Agarwal time)

𝑡𝑝 production time

𝑉 volume

𝑉𝑓 volume of fracture

𝑉𝑙 liquid volume

𝑉𝑚 volume of matrix

𝑣𝑝 speed of pressure front

𝑉𝑤 total wellbore volume

𝑊 channel width

𝑤𝑓 fracture width

𝑥𝑓 fracture half length

m mass

Subscripts

𝐷 dimensionless form

ℎ horizontal

𝑖 initial

𝑖 irreducible

𝑙 liquid

𝑜 oil

𝑜 outer

𝑟 relative

𝑣 vertical

𝑤 water

𝑤 well
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