Volume

1

Norwegian university of technology and science

Institute for Refrigeration and Air-Conditioning

NeqSim

USERS GUIDE

Norwegian university of technology and science

NeqSim users guide

(Institute of refrigeration and air-conditioning

Kolbjørn Heies vei 1a

Phone 73 58 10 10 • Fax 73 58 10 10 •
Table of Contents

1History of NeqSim

2Description of this Manual

3Description of the GUI

9The Python Scripting language

19The main modules

28The thermodynamic module

36The fluid mechanics module

40The process system module

45The statistics module

46The Matlab toolbox

Chapter

1

Introduction to NeqSim

NeqSim is an open source project for thermodynamic and fluid-mechanic simulations. With NeqSim you can simulate the most common unit operations you find in the petroleum industry. Users are invited to contribute with their own modules/models to the code.
N
eqSim is a dynamic process simulator made to simulate the most common processes we find in the petroleum industry. This manual is intended to help both programmers and users to get started with the NeqSim simulator. It will help you to start using NeqSim as a simulator, and give an introduction to how the program is implemented – so that you can start to develop and extend the program.

[image: image39.png]

NeqSim is an abbreviation for Non-EQuilibrium SIMulator. If you want to use a free modelling tool in your experimental or theoretical research – you should consider using NeqSim.

History of NeqSim

The development of NeqSim started in 1998. It was implemented in an object-oriented language (Java@) – and it can easily be extended with new modules and mathematical models. At the moment NeqSim is based on six modules

· Thermodynamic module

· Fluid mechanics module

· Statistical module

· Fluid mechanics module

· GUI module

· Process system module

The modules are independent – so that you could use one ore more of them in your own programming project. All these modules are described in this manual.

Description of this Manual

The typesetting

The manual is written in word 2000 – and is converted to a pdf file.

This manual will be maintained as the NeqSim program develops and is extended (it will be). It does not describe the mathematical models used in NeqSim in any detail – to get this information you are referred to Solbraa (2002). It does give an introduction to how to use some of the models implemented. It gives you a short introduction to NeqSim – so that you can start using the program in your own work. If you have any questions – feel free to contact us by e-mail (solbraa@stud.ntnu.no). To get a complete insight into the program you will have to look into the source code and understand the object oriented implementation of the mathematical models.

After reading this manual you should be able to:

· Use NeqSim as a modelling tool

· Extend NeqSim with your own models

· Use the NeqSim toolbox for Matlab

· Perform statistical analysis and parameter fitting to your experimental data

The chapters in the manual are given in the order:…

Installation of NeqSim

The installation of NeqSim is done automatically when downloading it from the NeqSim homepage (www.stud.ntnu.no/neqsim/neqsim.htm). The Matlab toolbox must be added to the Matlab search-path if you want to use the NeqSim toolbox with Matlab. You will need Matlab 6.0 or higher – with support for Java2.

Chapter

2

The NeqSim GUI

The graphical userinterface in NeqSim is written in Java using Java Swing (Java2). The graphical userinterface was generated with the free and open source IDE - Forte - developed by Sun@.

T
Description of the GUI

he NeqSim GUI is programmed with the Java Swing API (Java2). The user interface consists of 4 main components, these are:

· The script editor – Jext (http://www.jext.org)

· The toolbars (thermodynamic-, process-, and fluid mechanics toolbar)

· The file explorer (python script explorer)

· The main frame

NeqSim uses some open source tools to do the graphical data processing. These tools are:

· VisAd (3D-visualization + animations)

· JfreeChart (2D – graphs)

· NetCDF (data handeling in binary format)

[image: image1.png]B casim aiohat (Guid2) il]
Fle t@ vew Heb

FIEEEC

[inimize

[e SORRNCTES) ioixl
{3 pythonscript

oDt DEo® BOE S > 0 i@ REs 0 & 5 noonoma| |
© [tools.

;
o Duasets (e A |] =

Flo Edt Search Tools Plgns dext

FAGAADE W

oot B EEEG N DI E B || Qoo

teasi.. | E1Forte . [[T sent .| oproces. | goiree .| oteasi.. | [SG TR D= 2047

Figure 1 The NeqSim GUI

A screenshot of NeqSim is given in figure 1. The GUI is used to make NeqSim scripts (Python). The scripts can be written by the user or made automatically by using the toolbars. When you have written a script in the text editor – you execute it by pressing the run button

[image: image2.png]

on the main toolbar. If the Python interpreter finds any logical errors in the script – an error message box will pop up – giving the error message from the interpreter (figure 2).

[image: image3.png]<« D}
Double-click error to go to matching line. Clear

Figure 2 Error message from the Python interpreter

The text editor (Jext) is a powerful text editor – developed as an open source project with many developers contributing. More information about this text editor (and new versions) can be found at the web page http://www.jext.org. The Jext text editor can easily be extended with plugins – and many such plugins are available from the Jext homepage.

The Main Frame

The main frame of the GUI lets the user control the appearance of the main components of the GUI.

[image: image4.png]Jil=i k]

Fo ta[Vew|rob
EESCN

File Explorer

With the View menu you can select witch toolsbars you want to see in the GUI and you can also open the VisAd Calculator.

The toolbars available are

· The thermodynamic toolbar

· The process toolbar

· The fluid mechanic toolbar

The toolbars will help you to generate scripts automaticly. Using the toolbars you should be able to create fully functional scripts – without having to code anything by hand.

A button on the thermodynamic-toolbar you probably will use regularly, is the upper button on the thermodynamic-toolbar menu:

[image: image5.png]

When you click this button the dialog box in the figure below will pop up – and you are able to select components and the thermodynamic model you want to use.

[image: image6.png]Select Components and Thermodynamic Model

~=lolx|

- S o
jater methane. o

Enter number of Moles.

o

‘add

clear all

After selecting the components and the thermodynamic model – you click the OK button – and the NeqSim script will be generated automatically. Such a script is given in the textbox below.
The second button on the thermodynamic toolbar – will help you to generate flash calculation scripts.

[image: image7.png]

When you click this button – the following dialog box will pop up:

[image: image8.png]Eiriash R =(E]

Select Flash
® TPflash () PHflash
) Tsflash () PSflash
) PVfiash O Tflash
) BubblePaint () Dewpoint

V] Display Resut of Flash

When you have selected the type of flash calculation you want to do – you click the OK button – and the NeqSim script will be generated automatically. The resulting script will be

You can run this script by pressing the “run” button on the main frame. The results will be displayed as dialogbox (see figure below).

All the buttons on the toolbars will help you to generate specific scripts to performe thermodynamic-, fluid mechanic- and process simulations.

[image: image9.png][EiResults from TPflash

Phase Phase2 Phase3 Unit
imethane 995N (1 8768TET 8]

fwater 403TTIES 1ED 8]

ensty TABIHEA (1034393 o]
PhassFraction 502027E1 478736 8]
Molartass |1 80S1E1 1 o1ET komol
ico 2154790 4543950 [
Wiscasty 1031565 17412883 hgisec]
Conductivly 287184E2 5747660)
Pressue (EES (EES fbar]
Temperaturs 27315 7315 (G

Chapter

Chapter

3

The Python scripting language

NeqSim implements Python as a scripting language. Python is an interpreted, object oriented, platform independent and powerful programming language.

The Python Scripting language

T
he scripting language used in NeqSim – is Python (www.python.org). Python is an interpreted, easy, powerful and object oriented language. The python interpreter used in NeqSim is Jython – a interpreter written in Java. In this way it is easy to use your exicting Java librarys in Python – you are even able to inherit from your Java objects in your Python scripts.

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major platforms from the Python web site, http://www.python.org, and can be freely distributed. The same site also contains distributions of and pointers to many free third party Python modules, programs and tools, and additional documentation.

The introduction to python given in this section is mainly taken from www.python.org.

An Informal Introduction to Python
In the following examples, input and output are distinguished by the presence or absence of prompts (">>> " and "... "): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in Python start with the hash character, "#", and extend to the end of the physical line. A comment may appear at the start of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just a hash character.

Some examples:

this is the first comment

SPAM = 1 # and this is the second comment

 # ... and now a third!

STRING = "# This is not a comment."

Using Python as a Calculator
Let's try some simple Python commands. Start the interpreter and wait for the primary prompt, ">>> ". (It shouldn't take long.)

Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression syntax is straightforward: the operators +, -, * and / work just like in most other languages (for example, Pascal or C); parentheses can be used for grouping. For example:

>>> 2+2

4

>>> # This is a comment

... 2+2

4

>>> 2+2 # and a comment on the same line as code

4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:

... 7/3

2

>>> 7/-3

-3

Like in C, the equal sign ("=") is used to assign a value to a variable. The value of an assignment is not written:

>>> width = 20

>>> height = 5*9

>>> width * height

900
Strings
Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed in single quotes or double quotes:

>>> 'spam eggs'

'spam eggs'

>>> 'doesn\'t'

"doesn't"

>>> "doesn't"

"doesn't"

>>> '"Yes," he said.'

'"Yes," he said.'

>>> "\"Yes,\" he said."

'"Yes," he said.'

>>> '"Isn\'t," she said.'

'"Isn\'t," she said.'

Lists
Python knows a number of compound data types, used to group together other values. The most versatile is the list, which can be written as a list of comma-separated values (items) between square brackets. List items need not all have the same type.

>>> a = ['spam', 'eggs', 100, 1234]

>>> a

['spam', 'eggs', 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]

'spam'

>>> a[3]

1234

>>> a[-2]

100

>>> a[1:-1]

['eggs', 100]

>>> a[:2] + ['bacon', 2*2]

['spam', 'eggs', 'bacon', 4]

>>> 3*a[:3] + ['Boe!']

['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boe!']

Unlike strings, which are immutable, it is possible to change individual elements of a list:

>>> a

['spam', 'eggs', 100, 1234]

>>> a[2] = a[2] + 23

>>> a

['spam', 'eggs', 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list:

>>> # Replace some items:

... a[0:2] = [1, 12]

>>> a

[1, 12, 123, 1234]

>>> # Remove some:

... a[0:2] = []

>>> a

[123, 1234]

>>> # Insert some:

... a[1:1] = ['bletch', 'xyzzy']

>>> a

[123, 'bletch', 'xyzzy', 1234]

>>> a[:0] = a # Insert (a copy of) itself at the beginning

>>> a

[123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]

The built-in function len() also applies to lists:

>>> len(a)

8

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]

>>> p = [1, q, 4]

>>> len(p)

3

>>> p[1]

[2, 3]

>>> p[1][0]

2

>>> p[1].append('xtra') # See section 5.1

>>> p

[1, [2, 3, 'xtra'], 4]

>>> q

[2, 3, 'xtra']

Note that in the last example, p[1] and q really refer to the same object! We'll come back to object semantics later.

if Statements
Perhaps the most well-known statement type is the if statement. For example:

>>> x = int(raw_input("Please enter a number: "))

>>> if x < 0:

... x = 0

... print 'Negative changed to zero'

... elif x == 0:

... print 'Zero'

... elif x == 1:

... print 'Single'

... else:

... print 'More'

...

There can be zero or more elif parts, and the else part is optional. The keyword `elif' is short for `else if', and is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or case statements found in other languages.

for Statements
The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step and halting condition (as C), Python's for statement iterates over the items of any sequence (e.g., a list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:

... a = ['cat', 'window', 'defenestrate']

>>> for x in a:

... print x, len(x)

...

cat 3

window 6

defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types, i.e., lists). If you need to modify the list you are iterating over, e.g., duplicate selected items, you must iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list

... if len(x) > 6: a.insert(0, x)

...

>>> a

['defenestrate', 'cat', 'window', 'defenestrate']

The range() Function
If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates lists containing arithmetic progressions, e.g.:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates a list of 10 values, exactly the legal indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different increment (even negative; sometimes this is called the `step'):

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)

[-10, -40, -70]

To iterate over the indices of a sequence, combine range() and len() as follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']

>>> for i in range(len(a)):

... print i, a[i]

...

0 Mary

1 had

2 a

3 little

4 lamb

Defining Functions
We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n

... "Print a Fibonacci series up to n"

... a, b = 0, 1

... while b < n:

... print b,

... a, b = b, a+b

...

>>> # Now call the function we just defined:

... fib(2000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list of formal parameters. The statements that form the body of the function start at the next line, and must be indented. The first statement of the function body can optionally be a string literal; this string literal is the function's documentation string, or docstring.

There are tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse through code; it's good practice to include docstrings in code that you write, so try to make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely, all variable assignments in a function store the value in the local symbol table; whereas variable references first look in the local symbol table, then in the global symbol table, and then in the table of built-in names. Thus, global variables cannot be directly assigned a value within a function (unless named in a global statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not the value of the object).4.1 When a function calls another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of the function name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which can then also be used as a function. This serves as a general renaming mechanism:

>>> fib

<function object at 10042ed0>

>>> f = fib

>>> f(100)

1 1 2 3 5 8 13 21 34 55 89

You might object that fib is not a function but a procedure. In Python, like in C, procedures are just functions that don't return a value. In fact, technically speaking, procedures do return a value, albeit a rather boring one. This value is called None (it's a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the only value written. You can see it if you really want to:

>>> print fib(0)

None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n

... "Return a list containing the Fibonacci series up to n"

... result = []

... a, b = 0, 1

... while b < n:

... result.append(b) # see below

... a, b = b, a+b

... return result

...

>>> f100 = fib2(100) # call it

>>> f100 # write the result

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

· The return statement returns with a value from a function. return without an expression argument returns None. Falling off the end of a procedure also returns None.

· The statement result.append(b) calls a method of the list object result. A method is a function that `belongs' to an object and is named obj.methodname, where obj is some object (this may be an expression), and methodname is the name of a method that is defined by the object's type. Different types define different methods. Methods of different types may have the same name without causing ambiguity. (It is possible to define your own object types and methods, using classes, as discussed later in this tutorial.) The method append() shown in the example, is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to "result = result + [b]", but more efficient.

Default Argument Values
The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined, e.g.

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):

 while 1:

 ok = raw_input(prompt)

 if ok in ('y', 'ye', 'yes'): return 1

 if ok in ('n', 'no', 'nop', 'nope'): return 0

 retries = retries - 1

 if retries < 0: raise IOError, 'refusenik user'

 print complaint

This function can be called either like this: ask_ok('Do you really want to quit?') or like this: ask_ok('OK to overwrite the file?', 2).

Keyword Arguments
Functions can also be called using keyword arguments of the form "keyword = value". For instance, the following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):

 print "-- This parrot wouldn't", action,

 print "if you put", voltage, "Volts through it."

 print "-- Lovely plumage, the", type

 print "-- It's", state, "!"
More on Lists
The list data type has some more methods. Here are all of the methods of list objects:

append(x)

Add an item to the end of the list; equivalent to a[len(a):] = [x].

extend(L)

Extend the list by appending all the items in the given list; equivalent to a[len(a):] = L.

insert(i, x)

Insert an item at a given position. The first argument is the index of the element before which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to a.append(x).

remove(x)

Remove the first item from the list whose value is x. It is an error if there is no such item.

pop([i])

Remove the item at the given position in the list, and return it. If no index is specified, a.pop() returns the last item in the list. The item is also removed from the list.

index(x)

Return the index in the list of the first item whose value is x. It is an error if there is no such item.

count(x)

Return the number of times x appears in the list.

sort()

Sort the items of the list, in place.

reverse()

Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.6, 333, 333, 1, 1234.5]

>>> print a.count(333), a.count(66.6), a.count('x')

2 1 0

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.6, 333, -1, 333, 1, 1234.5, 333]

>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.6, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.6]

>>> a.sort()

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]
Modules
If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the input for the interpreter and running it with that file as input instead. This is known as creating a script. As your program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a handy function that you've written in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the main module (the collection of variables that you have access to in a script executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix .py appended. Within a module, the module's name (as a string) is available as the value of the global variable __name__. For instance, use your favorite text editor to create a file called fibo.py in the current directory with the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

 a, b = 0, 1

 while b < n:

 print b,

 a, b = b, a+b

def fib2(n): # return Fibonacci series up to n

 result = []

 a, b = 0, 1

 while b < n:

 result.append(b)

 a, b = b, a+b

 return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters the module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

Packages
Packages are a way of structuring Python's module namespace by using ``dotted module names''. For example, the module name A.B designates a submodule named "B" in a package named "A". Just like the use of modules saves the authors of different modules from having to worry about each other's global variable names, the use of dotted module names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry about each other's module names.

Suppose you want to design a collection of modules (a ``package'') for the uniform handling of sound files and sound data. There are many different sound file formats (usually recognized by their extension, e.g. .wav, .aiff, .au), so you may need to create and maintain a growing collection of modules for the conversion between the various file formats. There are also many different operations you might want to perform on sound data (e.g. mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a never-ending stream of modules to perform these operations. Here's a possible structure for your package (expressed in terms of a hierarchical filesystem):

Sound/ Top-level package

 __init__.py Initialize the sound package

 Formats/ Subpackage for file format conversions

 __init__.py

 wavread.py

 wavwrite.py

 aiffread.py

 aiffwrite.py

 auread.py

 auwrite.py

 ...

 Effects/ Subpackage for sound effects

 __init__.py

 echo.py

 surround.py

 reverse.py

 ...

 Filters/ Subpackage for filters

 __init__.py

 equalizer.py

 vocoder.py

 karaoke.py

 ...

The __init__.py files are required to make Python treat the directories as containing packages; this is done to prevent directories with a common name, such as "string", from unintentionally hiding valid modules that occur later on the module search path. In the simplest case, __init__.py can just be an empty file, but it can also execute initialization code for the package or set the __all__ variable, described later.

Chapter

4

The object-oriented implementation

NeqSim is built up in a highly object oriented way. Design patterns have been used as a fundation for the whole development process of the program.

The main modules

N
EqSim is built upon well know design patterns in object oriented programming (Design Patterns by Grad & Booch). The object-oriented design of the modules has been developed and changed many times during the last years. The design we have today – will hopefully be the final.

In the next section an object-oriented design is presented that has been developed during the last three years. This design has proven to generate a relatively fast code, and it is easy to implement new models in the code.

Designing object –oriented software is hard, and designing, reusable object –oriented software is even harder. You must find pertinent objects, factor them into classes at the right granularity, define class interfaces and inheritance hierarchies, and establish key relationships among them. The design should be specific to the problem at hand but also general enough to address future problems and requirements. You also want to avoid redesign, or at least minimize it.

Guidance for finding object-oriented design can be found in Design Patterns by Gamma et.al. (1995) and Java Design Patterns by ? (1999) .

The Thermodynamic Module

The main packages in the thermodynamic library developed in this work are described in this section

[image: image10.png]A system holds a vecior
of phase abjects

A phase object holds a veclor
of component objects

‘A componant holds the

Tha stom elements holds
information about each atom in a molecu
component

Figure 3Main packages in the thermodynamic library

The main packages are system, phase and component. When you create a thermodynamic object – you would instaniciate an object from the system package.

[image: image11.png]

A system object holds a vector of phase objects. The number of phase-objects is dependent on the thermodynamic state of the system. In principle a system can hold any number of phases.

The phase package is built up of the following objects

[image: image12.png]

Figure 4 The structure of the phase package

A phase object holds a vector of components. The phase-object can hold any number of components. A phase object holds a mixing rule object. All the mixing rules are defined in a single object – called mixing rule – as inner classes. The mixing rules currently implemented in the mixing rule class are:

· Classic mixing rule w/wo interaction parameters

· Huron-Vidal mixing rule

· Wong-Sandler mixing rule

· Electrolyte mixing rule

The component package is built up of the following objects

[image: image13.png]

Figure 5 The structure of the Component package

The component object holds all the data that is specific to a component. The component properties are read from a database/text file.

It is easy to extend the program with new types of systems, phases and components. All the diagrams above implements an interface in the top of the object hierarchy – and this interface tell the object which methods it must define. Normally very few lines of code have to be typed into the new object, since you will typically inherit from objects already defined in the hierarchy.

Thermodynamic operations

The thermodynamic operations are defined in its own object hierarchy. The structure of this hierarchy is shown in the diagram below:

[image: image14.png]& ThermodynamicOperations.

e PHflash () - void

B0 Psflash () - void

B0 TPfash () - void

0 bubblePointPressureFlash () - void
0 bubblePointPressureFlash () - void
e bubblePointTemperatureFlash () - void
%4 calcHPTphaseEnvelope () void
%0 calcPTphaseEnvelope () - void

0 calcPloadingCurve () - void

@ dewPointPressureFlash () - void
@ dewPointTemperatureFlash () - void
4 displayResult () - void

[freezingPointTemperatureFlash () : void
&0 printToFile () : void

50 setMultiPhaseFlash () : void

B0 setsystem () - void

@ writeNeICOF () - void

Figure 6 Thermodynamic operations

An example of a thermodynamic calculation

A simple example of a thermodynamic calculation is given below. This shows how a simple TPflash is done from java (not Python!). The displayResult method will display the results shown in the figure below.

[image: image15.png]Results from TPflash

Phase 1 Phase 2 Phase 3 Unit
methane 9.97813E-1 [1,80459E-4 0

water 20867163 (9998261 0

Density 6.81093E0 [1,01307E3 [kgim3]
PhaseFraction |5,01006E-1 |4,98994E-1]
Molamiass |160473E1 [1,8014BET kafkmol]
co 2,08676E0 [4,2432E0 ki)
Viscosity 1,084E-5 11028263 [kgim*sec]
Conductivity (32403362 [5,02882€-1 Wi
Pressure 100 100 barl
Temperature |200.15 29015 K

Figure 7 Result dialog from Tpflash

The Fluid Mechanics Module

The main packages in the fluid mechanics library developed in this work are described in this section

[image: image16.png]E_ ___

The process equipment module

The main packages in the process equipment module are

[image: image17.png]

The process equipment package consists of the following packages

[image: image18.png]ghnol
Jgpolll

The process equipment is updated constantly – and new kind of equipment is added regularly. Normally both a equilibrium process and non-equilibrium process equipment are added. The equilibrium process is what you find in common process simulators – and the non-equilibrium process is what is special for the NeqSim simulator.

The mixer process equipment package e.g. defines the following classes

[image: image19.png]

Where the Mixer is a mixer returns a stream at equilibrium – while the NeqStream return a non-equilibrium stream.

Chapter

5

The thermodynamic module

The thermodynamic module in NeqSim is built up of rigorous equation of states and mixing rules. Models for both non-polar, polar and electrolyte solution are supported.

The thermodynamic module

T
he thermodynamic library was introduced in chapter ?.The main package is system, phase and component. When you create a thermodynamic object – you would instaniciate an object from the system package.
Thermodynamic Models

Some of the most used available thermodynamic models are:

SRK equation of state

PR equation of state

Schwarzentruber-Renon Equation of State

Furst and Renon Electroyte Equation of State

NRTL – GE model

Mixing Rules

The available mixing rules are:

Classic w/o interaction parameters

Classic with interaction parameters

Huron Vidal mixing rule (default with NRTL – GE model)

Wong-Sandler mixing Rule (default with NRTL-GE model)

Electrolyte Calculations

NeqSim defines models for both strong and weak electrolyte systems. For strong electrolytes – we assume a complete dissociation into ions – while for weak electrolytes – we assume partially dissociation into ions (chemicalReaction package).

For weak electrolyte systems (e.g. amines) a chemical equilibrium algorithm is used to find the chemical composition of the liquid phases.

The thermodynamic model used for calculations for strong and weak electrolytes is a modified Furst-Renon equation of State (Solbraa, 2002). The model assumes 5 contribution to the molecular properties of a system – these 5 terms are

· Molecule – molecule attractive forces (equation of state)

· Molecule molecule repulsive forces (equation of state)

· Molecule – ion interaction forces (Plancke term)

· Ion – Ion interaction forces (MSA)

· Born term (energy of charging an ion)

Examples of Thermodynamic Calculations with NeqSim

Example 1.

The first example shows you how to define a new thermodynamic system, add a component to the system, and to do a TPflash with this system.

You create a new system with the method –

thermo(method name, temperature, pressure)

where

method name
-
‘srk’ – Soave Redlech Kwong

‘pr – Peng Robinson

temperature – the temperature of the system

pressure – the system pressure

addComponent(system, component, moles)

system – the system you want to add the component

TPflash(system, multiphase)

system – the system you want to flash

multiphase - check for multiple phases (3 or more) (1 – check / 0 – no check)
The result from this calculation will be:

[image: image20.png][EiResults from TPflash

Phase Phase2 Phase3 Unit
imethane (] 8]

ensty 10242260 lkg'3]
PhaseFracton 1E0 8]
Molartass |1 6043E1 lighmol
ico EE] [
Wiscasty 73411ES hgisec]
(Conductivty 1 83762)
Pressue o fbar]

Tomperaturs 1300 (G

Example 2 Calculation of thermodynamic properties of methane

The output after running the script will be

[image: image21.png]=laix

<« D}
Double-click error to go to matching line. Clear

Example 3

The result from running this script will be

[image: image22.png]=lolx|

rihlpy -22563 77243435654
riropy -59.81438951379565

olefrac 1 0.5

Iz 0.5084017285323048

fensity 1019.7881099441555

jscosty 0.0011070084205735245
jobsenergy 9935 8848743718
olarmass 0.016089105573614
elmhokzenergy -9359 271599553189

1«]

=

<«
Double-click error to go to matching line.

Example 4. 3D-chart with VisAd

The output from this script will be

[image: image23.png]Mappings | Controls | Clear | Close

Example 4 Strong electrolyte calculation (total association of ions)

When you want do calculations with electrolyte systems – you have to specify ‘electrolyte’ as the thermodynamic model.

The results from running this script are displayed in the figure below.

[image: image24.png][EiResults from TPflash

Phase Phase2 Phase3 Unit
iges 17077BE42 17077862 8]

o] 8]

fwater Ea 9 48T6TEA 8]

ensty 2290432 [106434€3 [CLE]
PhaseFracton 1E0 Ea 8]
Molartass 1 80151 1 8850281 komol
ico 1868630 1,884E0 [
Wiscasty 1080065 5 B980%E 4 hgisec]
Conductivly 250544E-2 5150061)
Pressue 003150222467 .. D 0150222457 fbar]
Temperaturs 23315 28815 (G

Example 5. Weak electrolyte calculation (total association of ions)

When you want do calculations with weak-electrolyte systems – you have to specify ‘electrolyte’ as the thermodynamic model. You also have to ask the program to look for possible chemical reactions.

[image: image25.png][EiResults from TPflash

Phase Phase2 Phase3 Unit
icoz 4STTTEEA 1842055 8]

WDEA. 1526144 8392 8]

fwater Ga2072E1 A 8]
WDEgs 907243 90723 8]
HCOaminus Bo72cE43 8072263 8]
ensty 634352 [1271207E3 [CLE]
PhassFraction |1 00907E-10__1E0 8]
Molartass |2 9330381 2750041 (bgkmol]
ico 11782460 1,28978€0 [
Wiscasty 1320455 (13004563 hgisec]
Conductivly 2440%E2 5148151)
Pressue 005248452391 .. 0 05248462391 fbar]
Tomperaturs 2330 2880 (G

Chapter

6

The fluid mechanics module

NeqSim is built up in a highly object oriented way…..

The fluid mechanics module

T
he fluid mechanics module is used to do numerical calculations for all kinds of process equipment. These numerical calculations can be computational demanding – and long computation times often occurs when we use this module. All fluid mechanical calculations are done with a one-dimensional one- or two fluid model (depending on the number of phases present).

The process equipment you would normally simulate with the fluid mechanical module is

· Pipe flow (one –phase, two phase, multiphase (not currently implemented))

· Reactor flow (absorption, distillation)

· Heat Exchanger flow

Pipe flow simulation

In this section we give an example of how you would simulate non-equilibrium two-phase pipe flow. We begin by opening the fluid-mechanics toolbar – by selecting view – toolbars – fluid mechanic toolbar on the main menu.

After opening the toolbar – you press the upper toolbar button.

[image: image26.png]

When you press this button – the following dialog box will pop up

[image: image27.png]&

Define Leg Properties:

Position [m]

o

Elevation [m]

10

Diameter [m]

ln.02s

Roughness [m]

lo.0oos

Outer Temperature [K]

hos.1s

‘add] clear all

-[o) x|
Select Pipe Properties
Selected Components
Legd o oms o oo pseas
Legt 10 oms 40 o005 aseis

In the dialog box you set the pipe specifications. A pipe is devided into a given number of legs – the properties for each leg must be specified and added to the pipe definition. The properties you have to specify for each leg are

· The position of the start of the leg

· The diameter of the pipe in the leg

· The elevation of the starting point of the leg

· The roughness of the pipe in the leg

· The surrounding (sea) temperature of the pipe

After the properties for each leg is defined – you have to switch to the Solver frame (in the tabbed frame) in the dialog box.. You will see the following dialog box:

[image: image28.png]&

Select Pipe Properties

Define Leg Properties: (P Praperties | Saiver |
Select System of Equations
Position [m] Select Fluid Mechanic Model Select Numeric Schema
o
— ——] —
10
Select Conservation laws: ~ Select non-equilirum modiel:
Diameter [mi ® Mass. () Non-eqibrium Heat Transer
ozs
(® Momentum (®) Non-eqillbrium Mass Transfer
Roughness [m]
lo.000s © Energy,
Outer Temperature [K] ® Components
es.15
add clear all

() Check for scale () Check for Hydrates.

~=lolx|

In the Solver dialog frame you select the type of solver you want to use. You also select the conservation laws to use and which non-equilibrium effects you want to consider.

If you are sure that you will have maximum one phase – you should select the one-fluid model as the fluid mechanics model. If two phases can occure – you must select the two fluid model.

For isothermal flow – you can skip the energy equation. For constant pressure flow you can skip the mass and momentum equations. If you want to consider thermodynamic or thermal non-equilibrium effects – you have to mark the check boxes.

After the desired model has been selected – you click the OK button – and the NeqSim script will be generated. Such a script is shown in the text box below

Reactor flow simulation

In this section we give an example of how you would simulate non-equilibrium two-phase reactor flow. We begin by opening the fluid-mechanics toolbar – by selecting view – toolbars – fluid mechanic toolbar on the main menu.

After opening the toolbar – you press the second toolbar button.

[image: image29.png]

more to come here…….

Heat exchanger simulations

In this section we give an example of how you would simulate non-equilibrium two-phase heat exchanger flow. In this type of flow is characterised by strong deviations from both thermodynamic and thermal equilibrium.

More to come……

Chapter

7

The process system module

NeqSim is built up in a highly object oriented way…..

The process system module

T
he process system module is probably the most useful module in NeqSim. With this module you are able to simulate both small and medium large process plants – with the most common equipment in the petroleum industry. In this chapter we present the most common process equipment you can define in NeqSim. We will specially present non-equilibrium process equipment – that is equaipment that you cant simulate with other simulation tools.

Process Tools

In this section we will present the most commonly used process equipment you will use in NeqSim. At the moment NeqSim does not support dynamical calculations – but we are working on implementing a dynamic network solver.

· Streams

Streams are objects that connect different process equipment. NeqSim defines two kinds of streams – these are equilibrium stream (Stream) and non-equilibrium streams (neqStream). The equilibrium stream assumes that the fluid is at equilibrium – and returns a fluid system at thermodynamic equilibrium. The neqStream does not assume equilibrium – and it returns a copy of the inlet system – not necessarily at equilibrium. You define a stream by clicking on the process toolbar button:

[image: image30.png]

when you click this button – the following dialog box will open

[image: image31.png]=18
Add Stream

® Equiorium Stream) Non-equibrium Stream

() Display Resut

In this dialog box you select the type of stream you want to create – and if the results from calculations should be visible. You click the OK button when you have defined the stream. The following script will be generated

· Separators

Separators will generate new streams from each of the phases present in the inlet stream. You define a separator by selecting the button

[image: image32.png]

on the process toolbar. The following dialog will pop up.

[image: image33.png]& =lalx|
Select Separator

(® 2-phase separator () multi phase separator

 Display Results

After clicking the OK button – the following script is generated

· Mixer

Mixers are used to connect different streams – and create one outlet stream. NeqSim defines two types of mixers (mixer) – equilibrium mixers and non-equilibrium mixers. (neqmixer).

You open the mixer dialog by clicking the button:

[image: image34.png]

on the process toolbar. The following dialog box will open

[image: image35.png]Add Mixer

) Display Result

When you select the desired mixer the and click the OK button – the script will be created.

· Splitter

The splitter is used to split a stream in to more streams.

More will be added….

· Compressor

The compressor is used to increase the pressure of a stream. The compression is done isentropic – or with a specified isentropic efficiency.

More to be added…..

· Expander
The expander is used to decrease the pressure – and to get shaft work.. The expancion is done isentropic – or with a specified isentropic efficiency.

· Heater / Cooler

The heater is used to increase/decrease the temperature of a stream to a specified temperature or with a specified delta T.

· Valve

A valve is used to decrease the pressure of a stream. The pressurereduction is done isenthalpic.

Examples of process simulations

Some examples of such simulations are given below

Example 1. Simulation of a separation process

Example 2. Example of the simulation of a medium large process plant

Chapter

8

The statistics module

NeqSim is built up in a highly object oriented way…..

The statistics module

T
he statistic module is used for parameter fitting to experimental data. Some exaples of this module is given in this section

Chapter

9

The Matlab toolbox

NeqSim can be used as a toolbox in Matlab. This is useful if you want to use some of the built in functions in Matlab in combination with your NeqSim scripts and tools.

The Matlab toolbox

N
EqSim can be used as a toolbox in Matlab. You can create Python scripts in NeqSim – and run in Matlab directly. In this way you are able to use the built in functions in Matlab – in combination with NeqSim. Some examples of these scripts are given in this section.

Creating the Matlab scripts

Creating the Matlab scripts are easy. The NeqSim scripts (Python) can be used in Matlab almost without change. This makes it convenient to make the script in NeqSim – and to use it in Matlab – if you want to use some toolboxes or some of the graphing capabilities in Matlab. Optimisation of process plants created in NeqSIm – can be done easily in Matlab using the optimisation routines.

Generally we can say that all the methods used by the thermodynamic, process and fluid mechanics toolbars in NeqSim – also works in Matlab.

Examples of Matlab scripts

Example 1. An example of a flash calculation

Example 2 Creating a 3D-graph in Matlab

This will create the following output from Matlab:

[image: image36.png]

Example 3 Process simulation with Matlab

Example 3

Example 4. Calculation of bubblepoint pressure curves of weak electrolyte systems (MDEA – CO2 – water)

In the example below we use Matlab to generate a plot of the vapour pressure of a weak electrolyte solution at varying temperatures.

The resulting graph is given in the figure below.

[image: image37.png]Pressure [bar]

09

vapour pressure vs. temperature

08

07

08

05

04

03

02

01

290

300

30 30 3.
Temperature [K]

340

350

360

[image: image38.png][EiResults from TPflash

Phase 1 Phase 2 Phase 3 Unit
coz 16067363 [1,23408E 6 0
MDEA 97036162 [5,18193E-2 0
water 9,00850E-1 (OE-1 0

MDEAplus [9,089756-43 |9,089756E-3 0
HCO3minus [8,08975E-43 |9,08975E-3 0

Density TEBBISE-1 |1,15404E3 [kgim3]
PhaseFraction |9,99999E-11 1E0]
Molaiass |2,79598E1 [2,7B00GET kafkmol]
co 1,27871E0|1,38769E0 ki)
Viscosity 1530665 [4,24781E4 [kgim*sec]
Conductity |2,799156-2 |5,80448E-1 Wi
Pressure 0.814322500... 0.814322500. barl

Temperature _|360.0 3600 K

Chapter

10

FAQ

How do I install NeqSim?

…….

How do I …?

…..

to be written……

Index

a

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 3, 3

Index 1, 1

Index 1, 1

b

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

c

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

d

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

e

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

g

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

h

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

k

Index 1, 1

L

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

m

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

n

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

r

Index 1, 1

Index 1, 1

s

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

t

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

w

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

The intention

The main intention of the manual is to give a fast introduction to NeqSim

 SystemInterface testSystem = new SystemSrk (250.15,70.00);

 ThermodynamicOperations testOps = new

 ThermodynamicOperations(testSystem);

 testSystem.addComponent("methane", 50);

 testSystem.addComponent("ethane", 50);

 testSystem.setMixingRule(4); // The Wong-Sandler mixing rule

 testOps.TPflash();

 testOps.displayResult();

legPositions = [0.0, 1.0,]

legHeights = [0.0, -1.0,]

pipeDiameters = [0.025, 0.025,]

outerTemperature = [298.15, 298.15,]

pipeWallRoughness = [0.0005, 0.0005,]

pipe = twophasepipe(inputStream, legPositions, pipeDiameters, legHeights, outerTemperature, pipeWallRoughness)

test = thermo('srk',190.0,1.0)

addComponent(test,'methane',10)

print 'enthalpy ', enthalpy(test,200.0,10.0)

print 'molar mass ', molarmass(test,200.0,10.0)

print 'Z ' , Z(test,200.0,10.0)

systemName = thermo('srk',293.15, 1.01325)

systemName.addComponent('methane', 1.0)

systemName.addComponent('water', 1.0)

systemName.setMixingRule(2)

systemName.initPhysicalProperties()

#thermo.TPflash(systemName,1)

TPflash(systemName,0)

enthalpy = enthalpy(systemName)

entropy = entropy(systemName)

molefrac1 = molefrac(systemName,0)

gibbsenergy = gibbsenergy(systemName)

helmholtzenergy = helmholtzenergy(systemName)

density = density(systemName,290)

viscosity = viscosity(systemName)

Z = Z(systemName)

molarmass = molarmass(systemName)

print "enthalpy ", enthalpy[0]

print "entropy ", entropy[0]

print "molefrac 1 ", molefrac1[0]

print "Z ", Z[0]

print "density ", density[2]

print "viscosity ", viscosity[2]

print "gibbsenergy ", gibbsenergy[2]

print "molarmass ", molarmass[1]

print "helmholtzenergy ", helmholtzenergy[2]

from thermoTools.thermoTools import *

reload(thermoTools)

systemName = thermo('srk',290,1.0)

systemName.addComponent('methane', 1.0)

systemName.addComponent('water', 1.0)

systemName.setMixingRule(1)

systemName.initPhysicalProperties()

TPflash(systemName,0)

func = enthalpy

#func = entropy

#func = density

#func = viscosity

z = []

for pres in range(1,10):

 a = []

 for temp in range(260,450):

 a.append(func(systemName,temp,pres)[0])

 z.append(a)

from plotTools import *

graph.clearplot()

f = graph.field(z)

graph.plot(f)

.

class fitFunction(TestFunction):

 def calcValue(self, dependentValues):

 self.system.init(0)

 self.system.init(1)

 pureFug = system.getPhases()[1].getPureComponentFugacity(0)

 fug = system.getPhases()[1].getComponents()[0].getFugasityCoeffisient()

 val = fug/pureFug

 print "activity: " + val

 return val

 def setFittingParams(self, i, value):

 self.params[i] = value

 if i==0:

 self.system.getPhases()[0].getMixingRule().setHVgijParameter(0,1, value)

 self.system.getPhases()[1].getMixingRule().setHVgijParameter(0,1, value)

 if i==1:

 self.system.getPhases()[0].getMixingRule().setHVgiiParameter(0,1, value)

 self.system.getPhases()[1].getMixingRule().setHVgiiParameter(0,1, value)

 if(i==2):

 self.system.getPhases()[0].getMixingRule().setHValphaParameter(0,1, value)

 self.system.getPhases()[1].getMixingRule().setHValphaParameter(0,1, value)

print "hei etter"

#defines the optimization routines

optimizer = LevenbergMarquardt()

#function = BinaryHVparameterFitToActivityCoefficientFunction()

function = fitFunction()

#setting initial guess

guess = [1000,1000]

function.setInitialGuess(guess)

print "hei etter"

#creating a emty list to hold samples

samples = []

#--

#example of a sample

#definition of the thermodynamic system of the sample

sample_1_System = SystemModifiedFurstElectrolyteEos(298.15,10.00)

sample_1_System.addComponent("water", 100)

sample_1_System.addComponent("MDEA", 10)

sample_1_System.chemicalReactionInit()

sample_1_System.setMixingRule(3)

#inserting measured values and standard deviations of the parameters

sampleValue_1 = [0.8]

standardDeviation_1 = [0.001]

sample_1 = SampleValue(1.916, 0.01, sampleValue_1, standardDeviation_1)

sample_1.setFunction(function)

sample_1.setThermodynamicSystem(sample_1_System)

#appending the sample to the sample-list

samples.append(sample_1)

#end sample_1

#--

add more samples here.......

#inserts samplelist into a sample-set

sampleSet = SampleSet(samples)

#run the optimzion

#optimizer.solve()

systemName = thermo('srk',273.15, 1.01325)

systemName.addComponent('methane', 1.0)

systemName.addComponent('water', 1.0)

systemName.setMixingRule(2)

stream1 = stream(systemName,'stream 1')

splitter1 = splitter(stream1,3)

splitStream = stream(splitter1.getSplitStream(0),'splitStream')

separator1 = separator(splitStream)

stream2 = stream(separator1.getGasOutStream())

stream3 = stream(separator1.getLiquidOutStream())

print processTools.processoperations.size()

processTools.run()

processTools.view(

initNeqSim

test = thermo('srk',280,70)

test.addComponent('methane', 10.0)

test.addComponent('water', 10.0)

TPflash(test,1) % 1- display results 0 - not display results

clear all;

initNeqSim;

test = SystemSrkEos

test.addComponent('methane', 10.0);

test.addComponent('water', 10.0);

test.setMixingRule(2);

i=0;

for temperature = [270:2:290]

 i=i+1;

 j=0;

 temp(i) = temperature;

 for pressure = [1:5:100]

 j = j+1;

 pres(j) = pressure;

 test.setTemperature(temperature)

 test.setPressure(pressure)

 TPflash(test,0);

 test.init(3);

 numberOfPhases(i,j) = test.getNumberOfPhases;

 enthalpy(i,j) = test.getEnthalpy;

 density(i,j) = test.getDensity;

 internalEnergy(i,j) = test.getInternalEnergy;

 molarVolume(i,j) = test.getMolarVolume;

 end

end

initNeqSim

processOperations.clearAll

system1 = SystemSrkEos(280,10)

system1.addComponent('methane', 10.0)

system1.addComponent('water', 10.0)

system2 = SystemSrkEos(280,10)

system2.addComponent('methane', 5.0)

system2.addComponent('water', 10.0)

stream1 = stream(system1,'troll1')

stream2 = stream(system2,'troll2')

mixer1 = mixer('troll_mixer')

mixer1.addStream(stream1)

mixer1.addStream(stream2)

separator1 = separator(mixer1.getOutStream,'troll_separator')

valve1 = valve(separator1.getGasOutStream, 5.0, 'troll_valve')

%this is wrong

%resultStream = stream(valve1.getOutStream)

%resultStream.setName('result stream')

processOperations.run

processOperations.displayResult

system = thermo('srk', 273.15, 1.01325)

addComponent(system,'methane',1.0)

addComponent(system,'water',1.0)

system.setMixingRule(1)

system = thermo('srk', 273.15, 1.01325)

addComponent(system,'methane',1.0)

addComponent(system,'water',1.0)

system.setMixingRule(1)

TPflash(system,1)

test = thermo('srk',190.0,1.0)

addComponent(test, ‘methane',10.0)

TPflash(test,1)

streamName = stream(systemname, 'streamName')

separatorName = separator(inStream, 'separatorName')

mixerName = mixer('mixerName')

mixerName.addStream(streamName)

Case: Troll-case

By: Even Solbraa

Date: 01.12.2001

from processTools.processTools import *

reload(processTools)

factor1 = 1.0

factor2 = 1.0

MSm_day_TrollA = 100.0e6 / 2.0

MSm_day_TrollWGP = 10.0e6 / 2.0 # deler på to rør

mol_sec_TrollA = MSm_day_TrollA*40.0/(3600.0*24.0)

mol_sec_TrollWGP = MSm_day_TrollWGP*40.0/(3600.0*24.0)

print "mol Troll_A " , mol_sec_TrollA

systemName = SystemSrkEos(321.0, 92.6)

systemName.addComponent("nitrogen", 0.0178*mol_sec_TrollA*factor1)

systemName.addComponent("methane", 0.95*mol_sec_TrollA*factor1)

systemName.addComponent("ethane", 0.035*mol_sec_TrollA*factor1)

systemName.addComponent("water", 0.01*mol_sec_TrollA*factor1)

systemName.setMixingRule(2)

systemName2 = SystemSrkEos((273.15+4.3), 92.6)

systemName2.addComponent("nitrogen", 0.01678*mol_sec_TrollWGP*factor1)

systemName2.addComponent("methane", 0.9465*mol_sec_TrollWGP*factor1)

systemName2.addComponent("ethane", 0.0365*mol_sec_TrollWGP*factor1)

systemName2.addComponent("water", 0.01*mol_sec_TrollWGP*factor1)

systemName2.setMixingRule(2)

stream1 = stream(systemName,"stream 1")

stream2 = stream(systemName2,"stream 2")

separator1 = separator(stream1)

separator2 = separator(stream2)

stream3 = stream(separator1.getGasOutStream(),"TrollA_gasOut")

stream4 = stream(separator2.getGasOutStream(),"TrollWGP_gasOut")

mixer1 = mixer("mixer1")

mixer1.addStream(stream3)

mixer1.addStream(stream4)

stream5 = stream(mixer1.getOutStream(),"mixerOut")

neqheater1 = neqheater(stream5, "heater1")

neqheater1.setdT(-2.5)

stream6 = stream(neqheater1.getOutStream(),"heaterOutEqui")

stream7 = neqstream(neqheater1.getOutStream(),"heaterOutNeq")

print "tot ant mol" , stream7.getMolarRate()

legHeights = [0,0]#,0,0,0,0,0,0]

legPositions = [0.0, 10.0]#, 62.5, 128.0, 190.0, 260.0, 330.0, 400.0]

pipeDiameters = [1.025, 1.025]#, 1.025,1.025,1.025,1.025,1.025, 1.025]

outerTemperature = [295.0, 295.0]#, 295.00, 295.00, 295.00, 295.00, 295.00, 295.00]

pipeWallRoughness = [1e-5, 1e-5]#, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5]

pipe = twophasepipe(stream7, legPositions, pipeDiameters, legHeights, outerTemperature, pipeWallRoughness)

run()

processTools.view()

print stream5.getTemperature()

initNeqSim

processOperations.clearAll

system1 = SystemSrkEos(280,10)

system1.addComponent('methane', 10.0)

system1.addComponent('water', 10.0)

system2 = SystemSrkEos(280,10)

system2.addComponent('methane', 5.0)

system2.addComponent('water', 10.0)

stream1 = stream(system1,'troll1')

stream2 = stream(system2,'troll2')

mixer1 = mixer('troll_mixer')

mixer1.addStream(stream1)

mixer1.addStream(stream2)

separator1 = separator(mixer1.getOutStream,'troll_separator')

valve1 = valve(separator1.getGasOutStream, 5.0, 'troll_valve')

%this is wrong

%resultStream = stream(valve1.getOutStream)

%resultStream.setName('result stream')

processOperations.run

processOperations.displayResult

system = thermo('electrolyte',298.15,0.01325)

addComponent(system,'Mg++',0.018)

addComponent(system,'Cl-',2*0.018)

addComponent(system,'water',1.0)

print bubp(system)

show(system)

.

system = thermo('electrolyte',298.0, 0.05)

addComponent(system,'CO2',0.01)

addComponent(system,'MDEA',0.1)

addComponent(system,'water',1.0)

reactionCheck(system)

mixingRule(system,4)

print bubp(system)

show(system)

syst = thermo('electrolyte',280, 1.0);

syst.addComponent('CO2',0.1)

syst.addComponent('MDEA',1.0)

syst.addComponent('water',10.0)

reactionCheck(syst)

j=0

for i = (280:360)

 j=j+1;

 disp 'i',i;

 setTemperature(syst,i);

 pres(j) = bubp(syst);

end

plot([280:360],pres)

xlabel('Temperature [K]')

ylabel('Pressure [bar]')

title('vapour pressure vs. temperature')

3

